Acoustic Emission on Failure Analysis of Rubber-Modified Epoxy Resin

  • Lee Deok-Bo (Reliability Analysis Research Center, Hanyang University)
  • Published : 2004.12.01

Abstract

Rubber-modified epoxy resins have been employed as adhesive and matrix materials for glass and corbon-fiber composites. The behavior of fracture around a crack tip for rubber-modified epoxy resin is investigated through the acoustic emission (AE) analysis of compact tension specimens. Damage zone and rubber particles distributed around a crack tip were observed by a polarized optical microscope and an atomic force microscope (AFM). The damage zone in front of pre-crack tip in rubber-modified specimen $(15wt\%\; rubber)$ began to form at about $13\%$ level of the fracture load and grew in size until $57\%$ load level. After that, the crack propagated in a stick-slip manner. Based on time-frequency analysis of AE signals and microscopic observation of damage zone, it was thought that AE signals with frequency bands of 0.15-0.20 MHz and 0.20­0.30 MHz were generated from cavitation in the damage zone and crack propagation, respectively.

Keywords

References

  1. A. F. Yee and R. A. Pearson, J. Mater. Sci., 21, 2462 (1986) https://doi.org/10.1007/BF01114293
  2. R. A. Pearson and A. F. Yee, J. Mater. Sci., 21, 2475 (1986) https://doi.org/10.1007/BF01114294
  3. T. K. Chen and Y. H. Jan, J. Mater. Sci., 21, 111 (1992)
  4. H. R. Daghyani, Y. W. Mai, and J. Wu, J. Mater. Sci. Lett., 13, 1330 (1994) https://doi.org/10.1007/BF00624486
  5. A. J. Kinloch, S. J. Shaw, D. A. Tod, and D. L. Hunston Polymer, 24, 1341 (1983) https://doi.org/10.1016/0032-3861(83)90070-8
  6. W. D. Bascom, J. Mater. Sci., 16, 2657 (1981) https://doi.org/10.1007/BF02402827
  7. L. T. Manzione and J. K. Gillham, J. Appl. Polym., 26, 889 (1981) https://doi.org/10.1002/app.1981.070260313
  8. D. B. Lee, J. Korean Fiber Soc., 39, 430 (2002)
  9. D. B. Lee, J. Korean Fiber Soc., 39, 323 (2002)
  10. D. B. Lee, T. Ikeda, M. Todo, N. Miyazaki, and K. Takahashi, Trans. Japan Soc. Mech. Eng., 65, 25 (1998)
  11. D. B. Lee, T. Ikeda, and N. Miyazaki, The Soc. Mat. Sci. (Japan), 50, 55 (2001)
  12. D. B. Lee, T. Ikeda, N. Miyazaki, and N. S. Choi, Eng. Frac. Mecha., 69, 1363 (2002) https://doi.org/10.1016/S0013-7944(01)00151-5
  13. D. B. Lee, T. Ikeda, N. Miyazaki, and N. S. Choi, Trad. ASME J. Eng. Mat. & Tech., 124, 206 (2002) https://doi.org/10.1115/1.1417980
  14. D. B. Lee, T. Ikeda, N. Miyazaki, and N. S. Choi, J. Mater. Sci. Lett., 22, 229 (2003) https://doi.org/10.1023/A:1022218530150
  15. R. A. Pearson and A. F. Yee, J. Mater. Sci., 21, 3828 (1991)
  16. R. Bagheri and R. A. Pearson, Polymer, 37,4529 (1996) https://doi.org/10.1016/0032-3861(96)00295-9
  17. A. F. Yee, D. M. Li, and X. Li, J. Mat. Sci., 28, 6392 (1993) https://doi.org/10.1007/BF01352202
  18. A. S. Holik, R. P. Kambour, S. Y. Hobbs, and D. G. Fink, Microstructural Sci., 1, 357 (1979)
  19. K. Arakawa, T. Mada, and K.Takahashi, Trans. Japan Soc. Mech. Eng., 66, 883 (2000) https://doi.org/10.1299/kikaia.66.883