Effects of Surface Modification of the Membrane in the Ultrafiltration of Waste Water

  • Cho Dong Lyun (Faculty of Applied Chemical Engineering and The Engineering Research Institute, Chonnam National University) ;
  • Kim Sung-Hyun (Faculty of Applied Chemical Engineering and The Engineering Research Institute, Chonnam National University) ;
  • Huh Yang Il (Faculty of Applied Chemical Engineering and The Engineering Research Institute, Chonnam National University) ;
  • Kim Doman (Faculty of Applied Chemical Engineering and The Engineering Research Institute, Chonnam National University) ;
  • Cho Sung Yong (Department of Environmental Engineering, Chonnam National University) ;
  • Kim Byung-Hoon (The Engineering Research Institute, Chonnam National University)
  • 발행 : 2004.12.01

초록

An ultrafiltration membrane (polyethersulfone, PM 10) was surface-modified by treating it with low-tem­perature plasmas of oxygen, acrylic acid (AA), acetylene, diaminocyolohexane (DACH), and hexamethyldisiloxane (HMDSO). The effects that these modifications have on the filtration efficiency of a membrane in waste water treat­ment were investigated. The oxygen, AA, and DACH plasma-treated membranes became more hydrophilic. The water contact angles ranged from < $10^{\circ}\;to\;55^{\circ}$ depending on the type of plasma and the treatment conditions. The oxygen plasma-treated membranes displayed a higher initial flux $(312-429\%),$ but lower rejection $(6-91\%),$ than did an untreated membrane. The AA plasma-treated membranes displayed lower or higher initial flux $(42-156\%),$ depending upon the treatment conditions, but higher rejection $(224-295\%)$ in all cases. The DACH plasma-treated membranes displayed lower initial flux. All of them, especially the AA plasma-treated membrane, displayed improved fouling resistance with either a slower or no flux decline. Acetylene and HMDSO plasma-treated membranes became more hydrophobic and displayed both lower initial flux and lower fouling resistance.

키워드

참고문헌

  1. R. E. Kesting, Synthetic Polymer Membranes, A Structural Perspective, 2nd ed., Wiely, New York, 1985
  2. H. Bause, H. Chmiel, N. Stroh, and E. Walitza, J. Membr. Sci., 27, 195(1986)
  3. D. L. Cho and O. Ekengren, J. Appl. Polym. Sci., 47, 2125 (1993)
  4. D. L. Cho and J. Lee, Polymer(Korea), 21, 142(1997)
  5. K.-J. Kim and A. G. Fane, J. Membr. Sci., 99, 149(1995)
  6. R. H. Sadath, D. R. Taylor, and N. N. Li, Separation Science and Technology, 28, 255 (1993)
  7. P. J. Giodarno, Jr., and R. C. Smerciak, U.S. Pat. 4, 784, 769 (1988)
  8. Z.-P. Zhao, J. Li, D.-X. Zhang, and C.-X. Chen, J. Membr. Sci., 232, 1 (2004)
  9. K. S. Kim, K. H. Lee, K. Cho, and C. E. Park, J. Membr. Sci., 199, 135(2004)
  10. D. S. Wavhal and E. R. Fisher, J. Membr. Sci., 209, 255 (2002)
  11. H. Yasuda, Plasma Polymerization , Academic Press, New York, 1985
  12. D. L. Cho, P. M. Claesson, C.-G. Golander, and K. Johansson, J. App J. Polym. Sci., 41, 1373 (1993)
  13. C.-G. Golander, M. W. Rutland, D. L. Cho, A. Johansson, H. Ringblom, S. Jonsson, and H. K. Yasuda, J. Appl. Polym Sci., 49, 39 (1993)