다중분광 및 다중시기 영상자료 통합을 통한 토지피복분류 갱신

Updating Land Cover Classification Using Integration of Multi-Spectral and Temporal Remotely Sensed Data

  • 발행 : 2004.12.01

초록

최근, 다중 센서 영상과 GIS 주제도 정보를 이용한 토지 피복 분류에 대해 관심이 증가하고 있는 추세이다. 그러나. 분류에 필요한 효과적인 GIS 정보를 충분히 보유하고 있음에도 불구하고, 최대우도법(MLE) 같은 전통적인 방법은 기존의 컴퓨터 프로그램들이 GTS 자료를 제대로 다룰 수 없다는 이유로 유용한 정보의 이용에 제한을 받아 왔다. 본 연구에서는 다중 파장대 및 다중 시기 영상을 이용하여 새로운 영상 분류기법을 제안하고자 한다. 특히 MLE기법을 확대하여 다중 스펙트럼 영상 자료 및 토지 피복 분류 자료 등을 함께 사용할 수 있도록 하였다. 또한 파라미터가 데이터에서 추정되는 경우 우도비(LRE) 추정법이 오히려 더 적합할 수 있어서 LRE기법도 함께 사용하였다. 연구 지역은 서해안 안면도 지역이며, 자료는 Landsat ETM+ 영상과 Landsat TM 영상을 이용하여 만든 토지 피복도이다. 연구 결과. 제안된 방법은 단일 스펙트럼 자료를 사용하는 것보다 현저히 개선된 분류 정확도를 나타낸다. 즉, 개선된 분류 영상들은. MLE를 사용했을 때는 $6.2\%$, LRE를 사용했을 때는 $9.2\%$의 분류 정확도 개선을 보였다. 또한 본 연구는 제시된 알고리즘이 토지 피복 변화에 따른 그 지역의 변화 지역 추출도 가능할 것으로 판단된다. 향후 토지피복 분류 결과는 실 세계에서 보다 정확한 의사결정을 위한 보완적인 자료로써 유용하게 사용될 수 있을 것이라는 판단된다.

These days, interests on land cover classification using not only multi-sensor data but also thematic GIS information, are increasing. Often, although we have useful GIS information for the classification, the traditional classification method like maximum likelihood estimation technique (MLE) does not allow us to use the information due to the fact that the MLE and the existing computer programs cannot handle GIS data properly. We proposed a new method for updating the image classification using multi-spectral and multi-temporal images. In this study, we have simultaneously extended the MLE to accommodate both multi-spectral images data and land cover data for land cover classification. In addition to the extended MLE method, we also have extended the empirical likelihood ratio estimation technique (LRE), which is one of non-parametric techniques, to handle simultaneously both multi-spectral images data and land cover data. The proposed procedures were evaluated using land cover map based on Landsat ETM+ images in the Anmyeon-do area in South Korea. As a result, the proposed methods showed considerable improvements in classification accuracy when compared with other single-spectral data. Improved classification images showed that the overall accuracy indicated an improvement in classification accuracy of $6.2\%$ when using MLE, and $9.2\%$ for the LRE, respectively. The case study also showed that the proposed methods enable the extraction of the area with land cover change. In conclusion, land cover classification produced through the combination of various GIS spatial data and multi-spectral images will be useful to involve complementary data to make more accurate decisions.

키워드

참고문헌

  1. Benediktsson, J. A. and Sveinsson,J. R., 1997, Feature extraction for multisource data classification with artificial neural networks, International Journal of Remote Sensing, 18(4), 727-740
  2. Binaghi, E., Madella, P., Montesano, M. G., and Rampini, A, 1997, Fuzzy contextual classification of multisource remote sensing images, IEEE Transactions on Geoscience and Remote Sensing, 35,326-340
  3. Chung, C. F., 1978, Computer program for the logistic model to estimate the probability of occurrence of discrete events, Geological Society of Canada Paper, 78-11
  4. Chung, C. F., Fabbri, A G. and van Westen, C. J., 1995, Multivariate regression analysis for landslide hazard zonation, Geographical Information Systems in Assessing Natural Hazards, 107-133
  5. Clerici, A., Perego, S., Tellini, C. and Vescovi, P., 2002, A procedure for landslide susceptibility zonation by the conditional analysis method, Geomorphology, 48,349-364
  6. Cox, D. R, 1969,The Analysis of Binary Data, Barnes & Nobel, INC
  7. Dai, A. and Khorram, S., 1999, Data fusion using artificial neural networks: a case study on multitemporal change analysis, Computer, Environment and Urban Systems, 23, 19-31
  8. Franklin, S. E., Peddle, D. R., Dechka, J. A. and Stenhouse, G. B., 2002, Evidential reasoning with Landsat TM, DEM and GIS data for land cover classification in support of grizzly. bear habitat mapping, International Journal of Remote Sensing, 23(21), 4633-4652
  9. Guan, L., Anderson, A. and Sutton, J. P., 1997, A network of networks processing model for image regularization, IEEE Transactions, Neural Networks, 8, 169-174
  10. Hubert-Moy, L., Cotonnec, A., Le Du, L, Chardin, A. and Perez, P., 2001, A comparison of parametric classification procedures of remotely sensed data applied on different landscape units, Remote Sensing of Environment, 75, 174-187
  11. Johnson, N. L. and Kotz, S., 1972, Distributions in Statistics: Continuous Multivariate Distribution, 4, John Wiley & Sons, Yew York
  12. Lee, T., Richards, J. A. and Swain, P. H., 1987, Probabilistic and evidential approaches for multisource data analysis, IEEE Transactions on Geoscience and Remote Sensing, 25, 283-293 https://doi.org/10.1109/TGRS.1987.289800
  13. Maselli, F., Conese, C., Filippis, T. and Romani, M., 1995,Integration of ancillary data into a maximum-likelihood classifier with nonparametric priors, ISPRS Journal of Photogrammetric and Remote Sensing, 50(2), 2-11
  14. Maxwell, E. L., 1976, Multivariate system analysis of multispectral imagery, Photogrammetric Engineering and Remote Sensing, 42, 1173-1186
  15. MeLallen, G. J., 1990, Discriminant Analysis and Statistical Pattern Recognition, John Wiley & Sons, INC
  16. Peddle, D. R., 1995, MERCURY: an evidential reasoning image classifier, Computers & Geosciences, 21(10), 1163-1176
  17. Peddle, D. R. and Ferguson, D.T., 2002, Optimisation of multisource data analysis: an example using evidential reasoning for GIS data classification, Computers and Geoscience, 28,45-52
  18. Press, S. J., 1972, Applied Multivariate Analysis, Holt, Rinehart and Winston, INC, New York
  19. Richards, J. A., 1995, Remote Sensing Digital Image Analysis, An Introduction, Springer-Verlag, New York
  20. Serpico, S. B., Bruzzone, L. and Roli, F., 1996, An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images, Pattern Recognition Letters, 17, 1331-1341
  21. Solaiman, B., Pierce, L. E. and Ulaby, F. T., 1999, Multisensor data fusion using fuzzy concepts: application to land-cover classification using ERS-1/JER5-1 SAR composites, IEEE Transactions on Geoscience and Remote Sensing, 37, 1316-1326
  22. Solberg, A. H., Jain, A. K. and Taxt, T., 1994, Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images, IEEE Transactions on Geoscience and Remote Sensing, 32(4), 768-778
  23. Solberg, A H., Taxt, T. and Jain, A. K., 1996, A Markov random field model for classification of multisource satellite imagery, IEEE Transactions on Geoscience and Remote Sensing, 34(1),100-113 https://doi.org/10.1109/36.481897
  24. Solberg, A.H., 1999, Contextual data fusion applied to forest map revision, IEEE Transactions on Geoscience and Remote Sensing, 37(3), 1234-1243
  25. Tso, B.C.K. and Mather, P. M. 1999, Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields, IEEE Transactions on Geoscience and Remote Sensing, 37,1255-1260
  26. Warrender, C. and Augusteijn, M., 1999, Fusion of image classifications using Bayesian techniques with Markov random fields, International Journal of Remote Sensing, 20(10), 1987-2002