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Performance Analysis of a Loss Retrial
BMAP/PH/N System

Che-Soong Kim', Young-Jin Oh’

Abstract This paper investigates the mathematical model of multi-server retrial
queueing system with the Batch Markovian Arrival Process (BMAP), the Phase type
(PH) service distribution and the finite buffer. The sufficient condition for the steady
state distribution existence and the algorithm for calculating this distribution are
presented. Finally, a formula to solve loss probability in the case of complete admission

discipline is derived.
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1. Introduction

Quick progress telecommunications implies of
new queueing. models interesting for research.
One of the first investigated queueing models is
Erlang loss model-the queue of the M/M/N/0
type. It is used as a background for decision
making in telephone systems until now. In this
model, the arriving customer who finds all
servers are busy upon arrival leaves the system
forever without the service. It is considered
Because the behavior of the users of telephone
networks is different from the assumed in
Erlang loss model(the user can try to initiate the
call a little bit later), retrial queueing models,
which are characterized by the fact that the
rejected call does not leave the system forever,
but try the luck after some random time, are
investigated intensively.

If the queueing model has N, N>2 servers,
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finite buffer (or the buffer is absent at all) and
the batch arrivals are possible, situations can
occur when the number of free servers at the
than the number of

arriving batch. Different

arrival epoch is less
customers in the
strategies of customers admission can be
exploited. Here we analyze the following variant.
If the arriving batch meets all servers be busy,
it leaves the system forever without effecting on
the system behavior. However, if at least one
server is idle, the batch is admitted into the
system. If the number of available servers is
sufficient to serve all customers of a batch, the
service starts immediately. In opposite case, a
part of the customers start the service while the
rest goes to so called orbit and try to get
service later on. So, the considered model
combines features of retrial and loss models. To
the best of our knowledge, such models were
not considered vyet, at least in the context of the

BMAP/PH/N type model.
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2. The Mathematical Model

The service device consists of N parallel
identical servers. Service time distribution is of
PH type. It means the following. The service
is directed by the continuous time

t20, The state of this
process at the service beginning epoch is defined
according to the

process

Markov process ™,

probabilistic  row~vector

N

B = (B, Bx) Further, transitions of the process
defined by the matrix S of
dimension M xM . The diagonal entries of the
and ~Smmdefines the
exponentially  distributed
sojourn time of the process in the state
m.|S,.|<©m=1LM The non-diagonal entries of

the matrix S define the intensities of transitions

m,t20 gm0

matrix are negative

parameter of the

of the process ™M:»! 20 the state space

The value Elsm'”' defines  the

of the transition of the process

{,..., M},
intensity
m,t20 from the state m into the absorbing
state. The epoch of the transition of the process
m,,t20into the absorbing state defines the
service completion epoch. Denote So = =S¢ . Here

and below eis a column-vector of appropriate
size consisting of units. It is assumed that all

of the
non-negative and at

the entries column-vector So  are

least one of them is
positive. The mean service time b1 is calculated

as b = ﬁ (" N )_le- The primary customers arrive
to the system according to a BMAP (Batch
Markovian Arrival Process). The notion of the
BMAP and its detailed description is given by
D.Lucantoni in [5]. Overview of related papers
can be found in [2]. We denote the directing

process of the BMAP by VistZ 0 The state
space of the irreducible continuous time Markov

chain YV is 0.L-..W}. As follows from {51, the
BMAP is
completely by the matrix generating function

behavior of the characterized

D(z)=kaz",[z] <1
k=0 .

The matrix P+ characterizes

the intensities of transitions of the process

Vit 20 which are accompanied by generating a
batch of & customers, k20. The matrix P

represents the generator of the process V22 0.

The average arrival rate 4 is defined as

A=6D'()e where @ is the invariant vector of

the stationary distribution of V¢, t20. The

vector 8 is the unique solution to the system

OD(1)=0,0e=1_ Here 0 is the row-vector of
appropriate size consisting of zeroes. If all
servers and busy at the epoch of a batch
arrival, the batch is not admitted
system and is considered be lost. If the number
of idle servers is greater than the batch size, all
arrived customers start the service and leave the
system after its completion. If the batch size is

into the

bigger than the number of available servers,
only a part of customers corresponding to a
number of free servers starts processing while
the rest moves to the orbit. Concerning the
retrial process, we suppose that the inter-retrial
times are exponentially distributed with the rate

2% which depend on the current number { of

customers on the orbit. We assume that @i

approaches to infinity when { =%, As a special
case linear repeated requests can be handled.

3. Description of the System Behavior in
Temms of Continuous Time Markov Chain

Let i

i 2 0, M, be the number of busy servers,

be the number of calls on the orbit,

n =0,N,m? be the state of the directing



. Jth
process of the service on the J busy server,
m? =LM,j=1n, here that the

busy servers are numerated in order of their

(we assume

occupying, i.e. the server, which begins service,
is appointed the maximal number among all

busy servers; when some server finishes the

service, the servers are correspondingly

enumerated), Vibe the state of the directing

process of the BMAP, v.=0.%,
t,t 2 0.

at the epoch

the  multi-dimensional

= (i &) (n,) .
51_(11’nt’vt’mt L l)’tZO' It is casy to

see that this process is an irreducible Markov
chain. Denote the stationary probabilities of this

Consider process

process as

p(,n,v,m®,...,m™)

=limPg =i, =ny, =vmf” =nf",...nf" =nl") (1)
for i20,v=0,W,m”=1M,j=1n, and n=0N.

Enumerate the states of the chain $-/20 in

lexicographic order and form the row-vectors B,

of the stationary state probabilities

pl,n,v,m®,....m™),  having  dimensionality
1 _ MN+| i

K=W+h——r—.i>0. Define also the

infinite-dimensional probability vector

D :(po,i’v )

If the in vector P exists then it
satisfies the equilibrium equation

Lemma.

pA=0, (2)

where - is the infinite row-vector consisting
of zeroes and the matrix A is the infinitesimal
generator of the chain 5120, gnd has the

following structure’

Ao Ay An A
4y A, A, A,

4= 0 4, 4, A4,
0 0

3)

where the blocks 4 of size KxK have the

following form:
0 I,®8 0 - 0
0 0 [;,®3 - 0
A =a)t : : :
0o o (NP SY-Y:
0 0 0 0 4)
0 - 0 Dk+N®ﬂ®N
0 - 0 Dy, ®ly ®,B®(N—l)
B(N-2)
A = 0 . 0 Dk+N_2®IM®ﬂ Lk2>1
0o - 0 D, (Z)IM,\,_l ®ﬂ®1 )
0 0
0, F<r-1r=2,N
IW®S:3', r=r—1,r=1,_
D, oS ~alg,., r'=r,r=0,N,-1
(Ai,i)r,r' = Do @S@N +ZDk ®IWM” , F=r=N
P
D,®I L ®p%, r=r+lI=,N-r,
1L ®F ®)
r=0,N-1

1,r=N,
Here "”—{O,raeN, is Kronecker’s symbol, ® s

the sign of Kronecker’s product, and ® is the
def

] Y =p®..808, 121

sign o Kronecker’s sum. — ,

def

def
§% = ... @
s@ S, S@O =0’

121,

!

def I-1
e —
Sy = §1Mm OS50 @lyims 131 F=Wl, I, and

0, denote the identity matrix and zero matrix
correspondingly of size LxL: 1 =1,

It is easy to see that the generator A of the



Markov  chain  $-!20,  differs from the
corresponding  generator of the analogous
Markov chain for the BMAP/PH/N retrial

system, which was investigated in [1], only with
the last block entry of the last row of the
matrix 4.+ and the entry (4w, So, technique
of [1] can be effectively exploited to investigate
the considered system. It means the following.
Instead of investigating the continuous-time
Markov $-t20,  we deal with the
discrete-time Markov chain has one-step of the

Markov  chain = %f20 This

discrete-time Markov  chain one-step
transition probability matrix which 1s obtained

chain

transitions.
has

from the generator A by dividing entries of each
its row by the modulus of the corresponding
diagonal entry and adding 1 to the diagonal
entry.

4. Stability Conditions

By analogy with [1], we can show that this
discrete-time Markov chain belongs to the class
of the so-called asymptotically quasi-toeplitz
Markov chains introduced in [4].

Steady-state distribution of the
considered queueing system (as well as the
stationary  distribution of both
continuous and discrete tine Markov chains)

Theorem 1.
considered
exists for all values of the system parameters.

The outline of the proof is the following. As
follows from [4], stationary state distribution of
the asymptotically quasi-toeplitz Markov chain
exists if the stationary state distribution of its
limiting quasi-toeplitz Markov chain exists. The

limiting  quasi-toeplitz ~ Markov  chain s
characterized (see [3], [4]) by the matrix
generating function of one-step transition

probabilities Y(z) that here has the following
form:

0 I,®F 0 .. 0 0

0 0 ;98 .. 0 0
P(2)=|: H : :
0 0 0 OWM""xWM”" IWM”" ® ﬂ
0 0 0 . ClYI®8%)z CTz(DY® Sy +zd

where the diagonal matrix C has the diagonal
entries coinciding with the modulus of the
corresponding entries of the matrix DD ® S 1t
can be verified that the matrix ¥(2) is reducible
and the unique irreducible block of this matrix is

the matrix Y (2) having the following form:

-1 SN -1 ON
Py = {c z(?fl) ea; ) Y+zI C 0(1,7 ® 8¢ )z}

M M

Then, according the results from [4], sufficient
condition of the stationary distribution existence
for the Markov chains under consideration is the
fulfillment of the condition:

(det(zI - Y(2)))

= >0 )

Taking into account the block structure of the

matrix Y(2), the determinant in (7) can be
transformed to the form:

det(z] - ¥(2)) = (detC™)z"™"" det T(z) ®)
where T(@)==-2(DM)®5%")~(I; ® S5 YU ,v: ® B)
z=1,

Differentiating (8) at the point we can

show that condition (7) is equivalent to
inequality
(detT(z))|,.,>0 (9)

Decomposing the determinant of T (z) in the
entries of ant column, it can be shown that

inequality (9) is equivalent to inequality
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(I ®5*)e<0 (10)

where the vector X is the unique solution to

the following system of linear algebraic
equations
¥T(1) =0, ¥e=1. (11)

By direct substitution, it can be shown that
solution of system (11) has a form
i=0®5y (12)
where the vector y i1s the umque positive
solution to the following system of linear
algebraic equations:

FS®Y 482V (1, 00 ® B))=0, Fe=1 (13)

Substituting (12). into (10), we get inequality

y5®Ve <0 (14)

1t follows from (13) that (14) is equivalent to

SN v ® B> 0 (15)

WMN—I

Because vector Y
86" (g
we conclude that inequality (15) is fulfilled any
values of the system parameters. Theorem 1 is

is positive while the matrix

® L) is non—negative and non-zero,

proven.

5. Algorithm for Calculation of the Stationary
Distribution and Loss Probability

The algorithm for calculation of the stationary
probability vectors P12i20 is the same as one

elaborated in [1]. One of the most important

characteristics of the considered model is the

F

probability ‘wss that arbitrary customer is lost

in the system.

Theorem?2. Loss probability Bos in the case of
completion admission discipline is calculated as
follows:

]

N-1
I)Ioss =1_ﬂ’_12ﬁiszlii)é (16)
= k=1

where 51?) =D, ®I,.,k21i>0.

The outline of the proof is the following.
According to a formula of the total probability,

the loss probability Floss is calculated as

b4

@©
Pk P.(k)R(i’k)
H

'})l()ss = 1 -
k=1 17

1

1
(=1

where B is a probability that an arbitrary

customers arrives in a batch consisting of &

customers, Pk(k) is a probability to see I servers
being busy at the epoch of the k size batch
arrival, RY® is a probability that an arbitrary
customer will not be loss conditional it arrives
in a batch consisting of k customers and I
servers are busy at the arrival epoch. It can be
shown that

—- () =
R(k)zl’iD_lrf, i=0,N -1, k>1
7D,3 (18)
p = koD, =k63"e, k21
eglu,e (19)
RS — L isN-l
- 0, l) N-1 (20)
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By substituting (18)-(20) into (17) after some
algebra we get (16). Theorem 2 is proven.

6. Conclusions

This paper investigates the mathematical
model of multi-server retrial queueing system
with the Batch Markovian Arrival Process, the
Phase type service distribution and the finite
buffer. The Sufficient condition for the steady
distribution existence and the algorithm for
calculating this distribution are presented. The
presented results give a  straightforward
algorithmic way for calculation of performance
measures of the considered BMAP model. Also
the considered model combines features of retrial
and loss models. The results can be extended to
the case of another disciplines. For example, the
following disciplines, which occur in different
real life systems, can be accounted.
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