Study on Phase Relation and Synthesis of Pyrochlore in the System of Ca-Ce-Zr-Ti-O

Ca-Ce-Zr-Ti-O System에서의 파이로클로어 합성 및 상관계에 대한 연구

  • Chae Soo-Chun (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Bae In-Kook (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang Young-Nam (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yudintsev S.V. (Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry)
  • 채수천 (한국지질자원연구원 자원활용소재연구부) ;
  • 배인국 (한국지질자원연구원 자원활용소재연구부) ;
  • 장영남 (한국지질자원연구원 자원활용소재연구부) ;
  • Published : 2004.12.01

Abstract

Pyrochlore is known as one of the most promising materials for the immobilization of radionuclide in high level waste. This study included the synthesis, phase relation and characteristics of $pyrochlore(CaCeZr_xTi_{2-x}O_{7,\;x=0.2\~2.0)$ in the system of Ca-Ce-Zr-Ti-O. Using the CPS(Cold pressing and sintering) method, the mixtures of $CaCO3_,\;CeO_2,\;ZrO_2\;and\;TiO_2$ oxides were pressed, and sintered at $1100\~1600^{\circ}C$ for 20 hours. The optimal synthetic conditions at various compositions were differed from 1300 to $1600^{\circ}C$ Even in the optimal temperatures, pyrochlore or fluorite coexisted with minor amount of perovskite, $CeO_2\;or\;Ce_{0.75}Zr_{0.25}O_2$. It was confirmed that pyrochlore and fluorite structures were stable at $x\leq0.6\;and\;x\geq1.0$, respectively. Especially, the compositions of pyrochlore or fluorite showed non-stoichiometric compositions in that contents of Ca and Ti were more deficient and those of Zr and Ce were more excess than batch compositions with the increase of x value. These characteristics stemmed from the behavior of elements occupied at eight- and six-coordinated site, and then caused the coexistence of perovskite, $CeO_2\;or\;Ce_{0.75}Zr_{0.25}O_2$ along with pyrochlore or fluorite.

고준위 폐기물 내에 함유된 핵종을 고정화시킬 수 있는 매트릭스로써 파이로클로어$(pyrochlore;\;CaCeZr_xTi_{2-x}O_7,\;x=0.2\~2.0)$를 합성하여 상평형 관계 및 특성을 연구하였다. 합성방법은 CPS법이었으며, $1100\~1600^{\circ}C$에서 20시간 동안 가열하였다. 실험결과, 최적 합성조건은 각각의 조성에 따라 $1300\~1600^{\circ}C$로 다양하였다. 최적 합성조건에서 파이로클로어 또는 형석구조를 나타내는 산화물(이하 '형석'으로 기재)은 소량의 페롭스카이트와 더불어 $CeO_2$ 또는 $Ce_{0.75}Zr_{0.25}O_2$와 공존하였다. 또한 원조성인 $CaCeZr_xTi_{2-x}O_7$$x\leq0.6$인 경우 파이로클로어 구조가, 그리고 $x\geq0.6$에서는 형석구조가 안정한 것을 확인하였다. 특히 x값의 증가에 따라, Ca 및 Ti 성분이 결핍되었으며, 이와는 대조적으로 Zr과 Ce가 초과됨으로써 비화학양론적 조성을 나타내었다. 이러한 특성은 팔배위와 육배위를 차지하고 있는 원소들의 거동에 의한 것으로, 파이로클로어 또는 형석이 단일상이 아니라 페롭스카이트, $CeO_2$$Ce_{0.75}Zr_{0.25}O_2$와 공존하는 원인이 된 것으로 사료된다.

Keywords

References

  1. 채수천, 배인국, 장영남, Yudintsev, S.V. (2004) Gd-Ti-O계 및 Gd-Zr-O계에서의 파이로클로어 합성연구. 자원환경지질, 37권, p. 303-309.
  2. Begg, B.D., Hess, N.J" McCready, D.E., Thevuthasan, S.,and Weber, w.J, (2001a) Heavy-ion irradiation effectsin Gdz(Tiz.xZrJ07 pryochlore. J, Nuc!. Mat., v. 289, p.188-193.
  3. Begg, B.D., Hess, N.J" Weber, WJ., Devanathan, R., Icenhower,J.P., Thevuthasan, S., and McGrail, B.P.(2001b) Heavy-ion irradiation effects on structuresand acid dissolution of pyrochlore. J. Nucl. Mat., v.228, p. 208-216.
  4. Feighery, A.J" Irvine, J.T.S., and Zheng, S. (2001) Phaserelation at 1500°C in the ternary system ZrOz-Gdz03'no, J, Solid State Chern., v. 160, p. 302-306.
  5. Kulkarni, N.K., Sampath, S. and Venugopal, V. (2000)Preparation and characterisation of Pu-pyrochlore:[Lal_xPuxjzZrZ07 (x=O-I). J. Nuc!. Mat., v. 281, p. 248250.
  6. Laverov, N.P., Yudintsev, S.v., Stefanovsky, S.v., and jang,Y.N. (2001) New actinide matrix with pyrochlorestructure. Doklady of the Russian Academy of Sciences,381A, v. 9, p. 1053-1056.
  7. Laverov, N.P., Yudintsev, S.v., Stefanovsky, S.v., and jang,Y.N., Lapina, M.L, Sivtsov, AV., and Ewing, RC.(2002) Phase transformations during synthesis ofactinide matrices, Doklady of the Russian Academy ofSciences, 385A, v. 6, p. 671-675.
  8. Luo S., Zhu X., and Tang B. (1998) Actinides containmentby using zirconolite-rich Synroc. In: Proceedings ofInternational Meeting on Nuclear and HazardousWaste Management (Spectrum 98), ArnericanNuclear Society, La Grange Park, IL, p. 829-833.
  9. Ringwood AE. (1985) Disposal of high-level nuclearwaste: a geological perspective. Mineralogical Magazine,v. 49, Pt. 2, p. 159-176.
  10. Ringwood, A.E., Kesson, S.E., Reeve, KD., Woolfrey,J,L., and Ramm, E.J. (1988) Radioactive waste formsfor the future. Edited by W. Lutze and Ewing, RC.,Elsev., Arnst., 233p.
  11. Sobolev, LA, Stefanovsky, S.v. and Lifanov, EA (1995)Synthetic melted rock-type wasteforms. MRS Sympo,Proc. v. 353, p. 833-840.
  12. Teterin, Yu. A., Stefanovskii, sv. Yudintsev, S.v., BekUzarov,G.N., Tetrerin, A.Yu., Maslakov, KL, andUtkin, 1.0. (2004) X-ray photoelectron study of calciumcerium titanate ceramics. Russian [orunal ofInorganic Chemistry, v. 49, p. 87-94.
  13. Vance E.R., Begg B.D., Day RA, and Ball C.J, (1995) Zirconolite-rich ceramics for actinide wastes. In: ScientificBasis for Nuclear Waste Management-XVIII.MRS Symposia Proceedings, v. 353, Pt. 2, p. 767-774.
  14. Yamamura, H., Nishino, H., Kakinuma, K, and Nomura,K (2003) Electrical conductivity anomaly around fluorite-pyrochlore phase boundary. Solid State Ionics, v.158, p. 359-365.
  15. Wang, J" Nakamura, A., and Takeda, M. (2003) Structuralproperties of the fluorite- and pyrochlore-type compoundsin the Gdz03-ZrOz system xGd01.5_(1_xlZrOZwith 0.18~~0.62. Solid State Ionies, v. 164, p. 185191.
  16. Weber, w.j. and Ewing, RC. (2000) Plutonium immobilizationand radiation effects. Science, v. 289, p.2051-2052.