Mapping of Carbon Flow Distribution in the Central Metabolic Pathways of Clostridium cellulolyticum: Direct Comparison of Bacterial Metabolism with a Soluble versus an Insoluble Carbon Source

  • DESVAUX, MICKAEL, (The University of Birmingham, Institute for Biomedical Research)
  • Published : 2004.12.01

Abstract

Metabolic flux analysis was established by adapting previous stoichiometric model developed during growth with cellulose to cell grown with cellobiose for further direct comparison of the bacterial metabolism. In carbon limitation with cellobiose, a shift from acetate-ethanol fermentation to ethanol-lactate fermentation is observed and the pyruvate overflow is much higher than with cellulose. In nitrogen limitation with cellobiose, the cellodextrin and exopolysaccharide overflows are much higher than on cellulose. In carbon and nitrogen saturation with cellobiose, the cellodextrin, exopolysaccharide, and free amino acids overflows reach the highest levels observed but all remain limited on cellulose. By completely shunting the cellulosome, the use of cellobiose allows to reach much higher carbon consumption rates which, in return, highlights the metabolic limitation of C. cellulolyticum. Therefore, the physical nature of the carbon source has a profound impact on the metabolism of C. cellulolyticum and most probably of other cellulolytic bacteria. For cellulolytic bacteria, the use of soluble carbon substrate must carefully be taken into consideration for the interpretation of results. Direct comparison of metabolic flux analysis from cellobiose and cellulose revealed the importance of cellulosome, phosphoglucomutase and pyruvate-ferredoxin oxidoreductase in the distribution of carbon flow in the central metabolism. In the light of these findings, future directions for improvement of cellulose catabolism by this bacterium are discussed.

Keywords

References

  1. Angelidaki, I., L. Ellegaard and B. K. Ahring. 2003. Applications of the anaerobic digestion process. Adv. Biochem. Eng. Biotechnol. 82: 1-33
  2. Bayer, E. A. and R. Lamed. 1992. The cellulose paradox: Pollutant par excellence and/or a reclaimable natural resource? Biodegradation 3: 171-88
  3. Bélaïch, J. P., C. Tardif, A. Bélaïch, and C. Gaudin. 1997. The cellulolytic system of Clostridium cellulolyticum. J. Biotechnol. 57: 3-14
  4. Boisset, C., H. Chanzy, B. Henrissat, R. Lamed, Y. Shoham, and E. A. Bayer. 1999. Digestion of crystalline cellulose substrates by Clostridium thermocellum cellulosome: Structural and morphological aspects. Biochem. J. 340: 829-835
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248- 254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8: 130-132
  7. Desvaux, M. 2001. La fermentation de la cellulose par Clostridium cellulolyticum: Métabolisme modèle d’un Clostridium cellulolytique mésophile. PhD thesis, Université Henri Poincaré-Nancy I, Nancy, France
  8. Desvaux, M., E. Guedon, and H. Petitdemange. 2001. Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. J. Bacteriol. 183: 119- 130
  9. Desvaux, M., E. Guedon and H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66: 2461-2470 https://doi.org/10.1128/AEM.66.6.2461-2470.2000
  10. Desvaux, M., E. Guedon, and H. Petitdemange. 2001. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Appl. Environ. Microbiol. 67: 837-845
  11. Desvaux, M., E. Guedon, and H. Petitdemange. 2001. Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment. Microbiology 147: 1461-1471
  12. Desvaux, M. and H. Petitdemange. 2001. Flux analysis of the metabolism of Clostridium cellulolyticum grown in cellulose-fed continuous culture on a chemically defined medium under ammonium-limited conditions. Appl. Environ. Microbiol. 67: 3846-3851
  13. Dubois, M., K. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1951. A colorimetric method for the determination of sugars. Nature 168: 167
  14. Giallo, J., C. Gaudin, and J. P. Bélaïch. 1985. Metabolism and solubilization of cellulose by Clostridium cellulolyticum H10. Appl. Environ. Microbiol. 49: 1216-1221
  15. Guedon, E., M. Desvaux, and H. Petitdemange. 2002. Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68: 53-58
  16. Guedon, E., M. Desvaux, and H. Petitdemange. 2000. Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: Importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture. J. Bacteriol. 182: 2010-2017
  17. Guedon, E., S. Payot, M. Desvaux, and H. Petitdemange. 1999. Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J. Bacteriol. 181: 3262-3269
  18. Guedon, E., S. Payot, M. Desvaux, and H. Petitdemange. 2000. Relationships between cellobiose catabolism, enzyme levels, and metabolic intermediates in Clostridium cellulolyticum grown in a synthetic medium. Biotechnol. Bioeng. 67: 327- 335 https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<327::AID-BIT9>3.0.CO;2-U
  19. Hofman-Bang, J., D. Zheng, P. Westermann, B. K. Ahring, and L. Raskin. 2003. Molecular ecology of anaerobic reactor systems. Adv. Biochem. Eng. Biotechnol. 81: 151-203
  20. Holms, H. 1996. Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol. Reviews 19: 85-116
  21. Huang, L. and C. W. Forsberg. 1990. Cellulose digestion and cellulase regulation and distribution in Fibrobacter succinogenes subsp. succinogenes S85. Appl. Environ. Microbiol. 56: 1221-1228
  22. Kovarova-Kovar, K. and T. Egli. 1998. Growth kinetics of suspended microbial cells: From single-substrate-controlled growth to mixed-substrate kinetics. Microb. Mol. Biol. Rev. 62: 646-666
  23. Leschine, S. B. 1995. Cellulose degradation in anaerobic environments. Annu. Rev. Microbiol. 49: 399-426 https://doi.org/10.1146/annurev.mi.49.100195.002151
  24. Lynd, L. R., J. H. Cushman, R. J. Nichols, and C. E. Wyman. 1991. Fuel ethanol from cellulosic biomass. Science 251: 1318-1323
  25. Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577
  26. Matheron, C., A. M. Delort, G. Gaudet, E. Forano, and T. Liptaj. 1998. $^13$C and $^1$H nuclear magnetic resonance study of glycogen futile cycling in strains of the genus Fibrobacter. Appl. Environ. Microbiol. 64: 74-81
  27. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  28. Mitchell, W. J. 1998. Physiology of carbohydrate to solvent conversion by clostridia. Adv. Microb. Physiol. 39: 31-130 https://doi.org/10.1016/S0065-2911(08)60015-6
  29. Mokrasch, L. C. 1967. Use of 2,4,6-trinitrobenzenesulfonic acid for the coestimation of amines, amino acids, and proteins in mixtures. Anal. Biochem. 18: 64-71 https://doi.org/10.1016/0003-2697(67)90057-7
  30. Monserrate, E., S. B. Leschine, and E. Canale-Parola. 2001. Clostridium hungatei sp. nov., a mesophilic, N$_2$-fixing cellulolytic bacterium isolated from soil. Int. J. Syst. Microbiol. 51: 123-132
  31. Nandi, R. and S. Sengupta. 1998. Microbial production of hydrogen: An overview. Crit. Rev. Microbiol. 24: 61-84
  32. Payot, S., E. Guedon, C. Cailliez, E. Gelhaye, and H. Petitdemange. 1998. Metabolism of cellobiose by Clostridium cellulolyticum growing in continuous culture: Evidence for decreased NADH reoxidation as a factor limiting growth. Microbiology 144: 375-384
  33. Pereira, A. N., M. Mobedshashi, and M. R. Ladish. 1988. Preparation of cellodextrins. Meth. Enzymol. 160: 26-45
  34. Petitdemange, E., F. Caillet, and C. Gaudin. 1984. Clostridium cellulolyticum sp. nov., a cellulolytic mesophilic species from decayed grass. Int. J. Syst. Microbiol. 34: 155-159
  35. Stephanopoulos, G. 1999. Metabolic fluxes and metabolic engineering. Metab. Eng. 1: 1-11
  36. Strobel, H. J., F. C. Caldwell, and K. A. Dawson. 1995. Carbohydrate transport by the anaerobic thermophile Clostridium thermocellum LQRI. Appl. Environ. Microbiol. 61: 4012-4015
  37. Updegraff, D. M. 1969. Semimicro determination of cellulose in biological materials. Anal. Biochem. 32: 420-424 https://doi.org/10.1016/S0003-2697(69)80009-6
  38. Weimer, P. J., Y. Shi, and C. L. Odt. 1990. A segmented gas/ liquid delivery system for continuous culture of microorganisms on insoluble substrates and its use for growth of Ruminoccus flavefaciens on cellulose. Appl. Microbiol. Biotechnol. 36: 178-183
  39. Wolin, M. J. and T. L. Miller. 1987. Bioconversion of organic carbon to CH$_4$ and CO$_2-$. Geomicrobiol. J. 5: 239- 259
  40. Zeng, A. P. 1999. Continuous Culture, 2$^nd$ Ed. American Society for Microbiology, Washington D.C., U.S.A