Metabolic Flux Distribution for $\gamma$-Linolenic Acid Synthetic Pathways in Spirulina platensis

  • Meechai Asawin (Department of Chemical Engineering, School of Engineering, King Mongkut's University of Technology) ;
  • Pongakarakun Siriluk (Department of Chemical Engineering, School of Engineering, King Mongkut's University of Technology) ;
  • Deshnium Patcharaporn (National Center for Genetic Engineering and Biotechnology (BIOTEC)) ;
  • Cheevadhanarak Supapon (Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntein campus) ;
  • Bhumiratana Sakarindr (Department of Chemical Engineering, School of Engineering, King Mongkut's University of Technology, National Center for Genetic Engineering and Biotechnology (BIOTEC))
  • Published : 2004.11.01

Abstract

Spirulina produces $\gamma$-linolenic acid (GLA), an important pharmaceutical substance, in a relatively low level compared with fungi and plants, prompting more research to improve its GLA yield. In this study, metabolic flux analysis was applied to determine the cellular metabolic flux distributions in the GLA synthetic pathways of two Spiru/ina strains, wild type BP and a high­GLA producing mutant Z19/2. Simplified pathways involving the GLA synthesis of S. platensis formulated comprise of photosynthesis, gluconeogenesis, the pentose phosphate pathway, the anaplerotic pathway, the tricarboxylic cycle, the GLA synthesis pathway, and the biomass syn­thesis pathway. A stoichiometric model reflecting these pathways contains 17 intermediates and 22 reactions. Three fluxes - the bicarbonate (C-source) uptake rate, the specific growth rate, and the GLA synthesis rate - were measured and the remaining fluxes were calculated using lin­ear optimization. The calculation showed that the flux through the reaction converting acetyl­CoA into malonyl-CoA in the mutant strain was nearly three times higher than that in the wild­type strain. This finding implies that this reaction is rate controlling. This suggestion was sup­ported by experiments, in which the stimulating factors for this reaction $(NADPH\;and\;MgCl_{2})$ were added into the culture medium, resulting in an increased GLA-synthesis rate in the wild type strain.

Keywords

References

  1. Ciferri, O. (1983) Spirulina, the edible microorganism. Microbiol. Rev. 47: 551-578
  2. Matsuno, T., S. Nagata, M. Iwahashi, T. Koike, and M. Okada (1979) Intensification of color of fancy red carp with zeaxanthin and myxoxanthophyll, major carotenoid constituents of Spirulina. Bull. Jpn. Soc. Sci. Fisheries 45: 627-633 https://doi.org/10.2331/suisan.45.627
  3. Vonshak, A. (1997) Use of Spirulina biomass, Spirulina platensis (Arthrospira) physiology, cell biology and biotechnology. Taylor & Francis Ltd., UK
  4. Cohen, Z. (1986) Product from Microalgae. CRC Press Inc., Florida, USA
  5. Nichols, B. W. and B. J. B. Wood (1968) The occurrence and biosynthesis of gamma-linolenic acid in blue-green alga, Spirulina platensis. Lipids 3: 46-50 https://doi.org/10.1007/BF02530968
  6. Wright, S. and J. H. Burton (1982) A controlled trial of the treatment of atopic eczema in adults with evening primrose oil (Efamol). Lancet : 1120-1122
  7. Horrobin, D. F. (1983) The role of essential fatty acids and prostaglandins in the premenstrual syndrome. J. Reprod. Med. 28: 465-468
  8. Huang, Y. S., M. S. Manku, and D. F. Horrobin (1984) The effect of dietary cholesterol on blood and liver polyunsaturated fatty acids and on plasma cholesterol in rats fed various types of fatty acid diet. Lipids 19: 664-672 https://doi.org/10.1007/BF02534526
  9. Shimizu, S., Y. Shinmen, H. Kawahima, K. Akimoto, and H. Yamada (1988) Fungal mycelia as a novel source of eicosapentaenoic acid. Biochem. Biophys. Res. Comm. 150: 335 https://doi.org/10.1016/0006-291X(88)90525-6
  10. Wolf, R. B., R. Kleiman, and R. E. England (1983) New sources of -linolenic acid (Boraginaceae, Scrophulariaceae, Onagraceae, Saxifragaceae). J. Am. Oil. Chem. Soc. 60: 1858 https://doi.org/10.1007/BF02901538
  11. Mahajan, G. and M. Kamat (1995) Linolenic acid production from Spirulina platensis. Appl. Microbiol. Biotechnol. 45: 466-469
  12. Tanticharoen, M., M. Reungjitchachawali, B. Boonag, P. Vonktaveesuk, A. Vonshak, and Z. Cohen (1994) Optimization of -linolenic acid (GLA) production in Spirulina platensis. J. Appl. Phycol. 6: 295-300 https://doi.org/10.1007/BF02181942
  13. Cohen, Z., A. Vonshak, and A. Richmond (1987) Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry 26: 2255-2258 https://doi.org/10.1016/S0031-9422(00)84694-4
  14. Suphatrakul, A. (1996) Effect of Temperature on the Expression of the 12-Desaturase Gene (desA) in Spirulina platensis C1. M.S. Thesis. King Mongkut's University of Technology, Thonburi, Bangkok, Thailand
  15. Deshnium, P., K. Paithoonrangsarid, A. Suphatrakul, D. Meesapyodsuk, M. Tanticharoen, and S. Cheevadhanarak (2000) Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438). FEMS Lett. 184: 207-213 https://doi.org/10.1111/j.1574-6968.2000.tb09015.x
  16. Cohen, Z., M. Reungjitchachawali, W. Siangdung, M. Tanticharoen, and Y. M. Heimer (1993) Herbicide resistant lines of microalgae: Growth and fatty acid composition. Phytochemistry 34: 973-978 https://doi.org/10.1016/S0031-9422(00)90696-4
  17. Berry, A. (1996) Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol. 14: 250-256 https://doi.org/10.1016/0167-7799(96)10033-0
  18. Gourdon, P. and N. D. Lindley (1999) Metabolic analysis of glutamate production by Corynebacterium glutamicum. Met. Eng. 1: 224-231 https://doi.org/10.1006/mben.1999.0122
  19. Hua, Q., P.C. Fu, C. Yang, and K. Shimizu (1998) Microaerobic lysine fermentations and metabolic flux analysis. Biochem. Eng. J. 2: 89-100 https://doi.org/10.1016/S1369-703X(98)00020-5
  20. Ingram, L. O., P. F. Gomez, X. Lai, M. Moniruzzaman, B. E. Wood, L. P. Yomano, and S. W. York (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol. Bioeng. 58: 204-214 https://doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C
  21. Vallino, J. J. and G. Stephanopoulos (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 41: 633-646 https://doi.org/10.1002/bit.260410606
  22. Vonshak, A. (1986) Laboratory Techniques for the Cultivation of Microalgae: CRC Handbook of Microalgal Mass Cultures. CRC Press, Florida, USA
  23. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugar and related substances. Analy. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  24. Allen, I. F. and N. G. Homes (1986) Electron Transport and Redox Titration: Photosynthesis Energy Transfuction, a Practical Approach. Information Printing Ltd., Oxford, UK
  25. Kaneko, T., S. Sato, H. Kotani, A. Tanaka, E. Asumizu, Y. Nakamura, N. Miyajima, and M. Hirosawa (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II Sequence determination of the entire genome and assigment of potential protein-coding regions. DNA Res. 3: 109-136 https://doi.org/10.1093/dnares/3.3.109
  26. Kaneko, T., S. Sato, H. Kotani, A. Tanaka, E. Asumizu, Y. Nakamura, N. Miyajima, and M. Hirosawa (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assigment of potential protein-coding regions (supplement). DNA Res. 3: 185-209 https://doi.org/10.1093/dnares/3.3.185
  27. Hua, Q. and K. Shimizu (1999) Effect of dissoved ozygen concentration on the intracellular flux distribution for pyruvate fermentation. J. Biotechnol. 68: 135-147 https://doi.org/10.1016/S0168-1656(98)00196-5
  28. Daae, B. E. and A. P. Ison (1999) Classification and sensitivity analysis of a proposed primary metabolic reaction network for Streptomyces lividans. Met. Eng. 1: 153-165 https://doi.org/10.1006/mben.1998.0112
  29. Stephanopoulos, G., A. A. Aristidou, and J. Nielsen (1998) Metabolic Engineering: Principles and Methodologies. Academic Press, San Diego, USA
  30. Yang, C., Q. Hua, and K. Shimizu (2000) Energetics and carbon metabolism during growth of microalgal cells un-der photoautotrophic, mixotrophic and cyclic light-auto-trophic/dark-heterotrophic conditions. Biochem. Eng. J. 6: 87-102 https://doi.org/10.1016/S1369-703X(00)00080-2
  31. Laing, W. A. (1992) The regulation of acetyl-CoA carboxylase. Res. Photosyn. 3: 39-42