Fed-batch Culture of Enterococcus faecalis RKY1 for L[+]-Lactic Acid Production

L[+]-Lactic Acid 생산을 위한 Enterococcus faecalis RKY1의 유가식 배양

  • Wee Young Jung (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kim Jin Nam (Department of Material Chemical and Biochemical Engineering, Chonnam National University) ;
  • Yun Jong Sun (BioHelix) ;
  • Park Don Hee (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kim Do Man (School of Biological Sciences and Technology, Chonnam National University) ;
  • Ryu Hwa Won (School of Biological Sciences and Technology, Chonnam National University)
  • 위영중 (전남대학교 생명과학기술학부) ;
  • 김진남 (전남대학교 물질생물화학공학과) ;
  • 윤종선 (바이오헬릭스) ;
  • 박돈희 (전남대학교 생명과학기술학부) ;
  • 김도만 (전남대학교 생명과학기술학부) ;
  • 류화원 (전남대학교 생명과학기술학부)
  • Published : 2004.10.01

Abstract

Fed-batch cultures of Enterococcus faecalis RKY1 were performed to maximize the L(+)-Iactic acid concentration in the bioreactor. The highest lactic acid concentration was obtained at around 225 g/L by intermittent feeding the concentrated glucose media containing 500 g/L of glucose and 15 g/L (or 75 g/L) of yeast extract. However, in all fed-batch cultures, volumetric productivities of lactic acid gradually decreased due to the inhibitory effect of lactic acid produced during the fermentation. The highest value of lactic acid concentration obtained in this work corresponded to around 1.5-fold increase compared with conventional batch fermentation.

Keywords

References

  1. Davison, B. E., R. M. Llanos, M. R. Cancilla, N. C. Redmann, and A. J. Hillier (1995), Current research on the genetics of lactic acid production in lactic acid bacteria, Int. Dairy J. 5, 763-784
  2. Benninga, H. (1990), A History of Lactic Acid Making, pp. 1-59, Kluwer Academic Publishers, Dordrecht
  3. Datta, R., S. P. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank (1995), Technological and economic potential of poly(lactic acid) and lactic acid derivatives, FEMS Microbiol. Rev. 16, 221-231
  4. Wilke, D. (1999), Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry, Appl. Microbiol. Biotechnol. 52, 135-145
  5. Vink, E. T. H., K. R. R$\'a$bago, D. A. Glassner, and P. R. Gruber (2003), Applications of life cycle assessment to NatureWorks$^TM$ polylactide(PLA) production, Polym. Degrad. Stabil. 80, 403-419.
  6. Yun, J. S., Y. J. Wee, and H. W. Ryu (2003), Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1, Enzyme Microb. Technol. 33, 416-423.
  7. VickRoy, T. B. (1985), Lactic acid, In Comprehensive Biotechnology Vol. 3, Moo-Young M., Ed., pp. 761-776, Pergamon Press, New York
  8. Lunt, J. (1998), Large-scale production, properties and commercial applications of polylactic acid polymers, Polym. Degrad. Stabil. 59, 145-152
  9. Yun, J. S. and H. W. Ryu (2001), Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1, Process Biochem. 37, 235-240
  10. Oh, H., Y. J. Wee, J. S. Yun, and H. W. Ryu (2003), Lactic acid production through cell-recycle repeated-batch bioreactor, Appl. Biochem. Biotechnol. 105/108, 603-613
  11. Bai, D. M., Q. Wei, Z. H. Yan, X. M. Zhao, X. G. Li, and S. M. Xu (2003), Fed-batch fermentation of Lactobacillus lactis for hyper-production of L-lactic acid, Biotechnol. Lett. 25, 1833-1835
  12. Bai, D. M., S. Z. Li, and F. Q. Lin (2004), Production of ammonium lactate by fed-batch fermentation of Rhizopus oryzae from corncob hydrolyzate, Chem. Res. Chin. Univ. 20, 403-406
  13. Tay, A. and S. T. Yang (2002), Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor, Biotechnol. Bioeng. 80, 1-12
  14. Ryu, H. W., K. H. Kang, and J. S. Yun (1999), Bioconversion of fumarate to succinate using glycerol as a carbon source, Appl. Biochem. Biotechnol. 77/79, 511-520
  15. Ryu, H. W., K. H. Kang, J. G. Pan, and H. N. Chang (2001), Characteristics and glycerol metabolism of fumarate-reducing Enterococcus faecalis RKY1, Biotechnol. Bioeng. 72, 119-124
  16. Wee, Y. J., J. S. Yun, and H. W. Ryu (2002), Characteristics of succinic acid production by Enterococcus faecalis RKY1 immobilized in a hollow fiber bioreactor, Kor. J. Biotechnol. Bioeng. 17, 182-188
  17. Wee, Y. J., J. S. Yun, D. H. Park, and H. W. Ryu (2004), Biotechnological production of L(+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis, Biotechnol. Lett. 26, 71-74
  18. Fu, W. and A. P. Mathews (1999), Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate, and oxygen, Biochem. Eng. J. 3, 163-170
  19. Goncalves, L. M. D., A. Ramos, J. S. Almeida, A. M. R. B. Xavier, and M. J. T. Carrondo (1997), Elucidation of the mechanism of lactic acid growth inhibition and production in batch cultures of Lactobacillus rhamnosus, Appl. Microbiol. Biotechnol. 48, 346-350
  20. Assinder, S., L. V. J. Eynstone, R. P. Shellis, and G. H. Dibdin (1995), Inhibition of acid production in Streptococcus mutans R9: inhibition constants and reversibility, FEMS Microbiol. Lett. 134, 287-292
  21. Magni, C., D. Memndoza, W. N. Konings, and J. S. Lolkema (1999), Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH, J. Bacteriol. 181, 1451-1457