Sp1 Decoy Oligodeoxynucleotides Inhibit Serum-induced Mesangial Cell Proliferation

Sp1 Decoy Oligodeoxynucleotides에 의한 사구체 혈관간세포 증식억제 효과

  • Chae Young Mi (Department of Pathology, College of Medicine, Catholic University of Daegu) ;
  • Kim Sung Young (Department of Food Science, Andong Science College) ;
  • Park Kwan Kyu (Department of Pathology, College of Medicine, Catholic University of Daegu) ;
  • Chang Young Chae (Department of Pathology, College of Medicine, Catholic University of Daegu)
  • 채영미 (대구카톨릭대학교 의과대학 병리학교실) ;
  • 김성영 (인동과학대학 식품조리과) ;
  • 박관규 (대구카톨릭대학교 의과대학 병리학교실) ;
  • 장영제 (대구카톨릭대학교 의과대학 병리학교실)
  • Published : 2004.10.01

Abstract

Mesangial expansion caused by cell proliferation and glomerular extracellular matrix accumulation is one of the earliest renal abnormalties observed at the onset of hyperglycemia in diabetes mellitus. Transcription factor Sp1 is implicated in the transcriptional regulation of a wide range of genes participating in cell proliferation, and is assumed to play an essential role in mesangial expansion, transforming growth factor (TGF)-$\beta$1, plasminogen activator inhibitor (PAI)-1. We have generated a phosphorothioated double-stranded Sp1-decoy oligodeoxynucleotide that effectively blocks Sp1 binding to the promoter region for transcriptional regulation of TGF-$\beta$1 and PAI-1. The Sp1 decoy oligodeoxynucleotide suppressed transcription of these cytokines and proliferation of primary rat mesangial cells in response to serum stimulation. These results suggest that the Sp1 decoy oligodeoxynucleotide could bea powerful tool in preventing the pathogenesis of renal hypertrophy.

Keywords

References

  1. Guo, L. and C. Wu (2002), Regulation of fibronectin matrix deposition and cell proliferation by the PINCH-ILK-CH-ILKBP complex, FASEB J. 16, 1298-1300
  2. Pugliese, G., F. Pricci, P. Mene, G. I. Romeo, Nofroni, S. Giannini, B. Cresci, G. Galli, C. M. Rotella, U. Di Mario, and F. Pugliese (1997), High glucose level unmasks a genetic predisposition to enhanced extracellular matrix production in mesangial cells from the Milan normotensive strain, J. Am. Soc. Nephrol. 8, 406-414
  3. Ziyadeh, F. N. (2004), Mediators of diabetic renal disease: the case for TGF-beta as the major mediator, J. Am. Soc. Nephrol. 1, S55-57
  4. Massague, J. (1990), The transforming growth factor-beta family, Annu. Rev. Cell Biol. 6, 597-641
  5. Klahr, S. and J. Morrissey (2003), Obstructive nephropathy and renal fibrosis: The role of bone morphogenic protein-7 and hepatocyte growth factor, Kidney Int. Suppl. 87, S105-112
  6. Border, W. A. and N. A. Noble (1994), Transforming growth factor beta in tissue fibrosis, N. Engl. J. Med. 331, 1286-1292
  7. Ziyadeh, F. N., K. Sharma, M. Ericksen and G. Wolf (1994), Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta, J. Clin. Invest. 93, 536-542
  8. Dzau, V. J. (2002), Transcription factor decoy. Circ. Res. 90, 1234-1236
  9. Morishita, R., T. Sugimoto, M. Aoki, I. Kida, N. Tomita, A. Moriguchi, K. Maeda, Y. Sawa, Y. Kaneda, J. Higaki, and T. Ogihara (1997), In vivo transfection of cis element 'decoy' against nuclear factor-kappaB binding site prevents myocardial infarction, Nat. Med. 3, 894-899
  10. Kawauchi, M., J. Suzuki, R. Morishita, Y. Wada, A. Izawa, N. Tomita, J. Kaneda, Y. Amano, T. Ogihara, S. Takamoto, and M. Isobe (2000), Gene therapy for attenuating cardiac allograft arteriopathy using ex vivo E2F decoy transfection by HVJ-AVE-liposome method in mice and nonhuman primates, Circ. Res. 87, 1063-1068
  11. Udvadia, A. J., D. J. Templeton, and J. M. Horowitz (1995), Functional Interactions Between the Retinoblastoma (Rb) Protein and Sp-Family Members: Superactivation by Rb Requires Amino Acids Necessary for Growth Suppression, Proc. Natl. Acad. Sci. USA. 92, 3953-3957
  12. Li, J. M., M. B. Datto, X. Shen, P. P. Hu, Y. Yu and X. F. Wang (1998), Sp1, but not Sp3, functions to mediate promoter activation by TGF-beta through canonical Sp1 binding sites, Nucleic Acids Res. 26, 2449-2456
  13. Zhang, X., Y. Li, C. Dai, J. Yang, P. Mundel, and Y. Liu (2003), Sp1 and Sp3 transcription factors synergistically regulate HGF receptor gene expression in kidney, Am. J. Physiol. Renal Physiol. 284, 82-94
  14. Slansky, J. E., Y. Li, W. G. Kaelin, and P. J. Farnham (1993), A protein synthesis-dependent increase in E2F1 mRNA correlates with growth regulation of the dihydrofolate reductase promoter, Mol. Cell. Biol. 13, 1610-1618
  15. Ahn, J. D., R. Morishita, Y. Kaneda, H. J. Kim, Y. D. Kim, H. J. Lee, K. U. Lee, J. Y. Park, Y. H. Kim, K. K. Park, Y. C. Chang, K. H. Yoon, H. S. Kwon, K. G. Park, and I. K. Lee (2004), Transcription factor decoy for AP-1 reduces mesangial cell proliferation and extracellular matrix production in vitro and in vivo, Gene Ther. Epub ahead of print
  16. Leehey, D. J., A. K. Singh, N. Alavi, and R. Singh (2000), Role of angiotensin II in diabetic nephropathy, Kidney Int. Suppl. 77, 93-98
  17. Hata, Y., E. Duh, K. Zhang, G. S. Robinson, and L. P. Aiello, (1998), Transcription factors Sp1 and Sp3 alter vascular endothelial growth factor receptor expression through a novel recognition sequence, J. Biol. Chem. 273, 19294-19303
  18. Ishibashi, H., K. Nakagawa, M. Onimaru, E. J. Castellanous, Y. Kaneda, Y. Nakashima, K. Shirasuna, and K. Sueishi (2000), Sp1 decoy transfected to carcinoma cells suppresses the expression of vascular endothelial growth factor, transforming growth factor beta1, and tissue factor and also cell growth and invasion activities, Cancer Res. 60, 6531-6536
  19. Verrecchia, F., J. Rossert, and A. Mauviel (2001), Blocking sp1 transcription factor broadly inhibits extracellular matrix gene expression in vitro and in vivo: implications for the treatment of tissue fibrosis, J. Invest. Dermatol. 116, 755-763
  20. Derylo, B., T. Babazono, E. Glogowski, J. Kapor-Drezgic, T. Hohman, and C. Whiteside (1998), High glucose-induced mesangial cell altered contractility: role of the polyol pathway, Diabetologia. 41, 507-515
  21. Holmgren, L., M. S. O'Reilly, and J. Folkman, (1995), Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression, Nat. Med. 1, 149-153
  22. Ahn, J. D., R. Morishita, Y. Kaneda, H. S. Kim, Y. C. Chang, K. U. Lee, J. Y. Park, H. W. Lee, Y. H. Kim, and I. K. Lee (2002), Novel E2F decoy oligodeoxynucleotides inhibit in vitro vascular smooth muscle cell proliferation and in vivo neointimal hyperplasia, Gene Ther. 9, 1682-1692
  23. Ahn, J. D., R. Morishita, Y. Kaneda, S. J. Lee, K. Y. Kwon, S. Y. Choi, K. U. Lee, J. Y. Park, I. J. Moon, J. G. Park, M. Yoshizumi, Y. Ouchi, and I. K. Lee (2002), Inhibitory effects of novel AP-1 decoy oligodeoxynucleotides on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo, Circ. Res. 90, 1325-1332
  24. Park, K. K., J, D. Ahn, I. K. Lee, J. Magae, N. H. Heintz, J. Y. Kwak, Y. C. Lee, Y. S. Cho, H. C. Kim, Y. M. Chae, Y. Kim, C. H. Kim, and Y. C. Chang (2003), Inhibitory effects of novel E2F decoy oligodeoxynucleotides on mesangial cell proliferation by coexpression of E2F/DP, Biochem. Biophys. Res. Commun. 308, 689-697
  25. Ahn, J. D., C. H. Kim, J. Magae, Y. H. Kim, H. J. Kim, K. K. Park, S. Hong, K. G. Park, I. K. Lee, and Y. C. Chang (2003), E2F decoy oligodeoxynucleotides effectively inhibit growth of human tumor cells, Biochem. Biophys. Res. Commun. 310, 1048-1053