A549 폐암세포주에서 ALA와 632nm Diode Laser를 이용한 광역학치료 유도성 세포사

Photodynamic Therapy induced Cell Death using ALA and 632nm Diode Laser in A549 Lung Cancer Cells

  • 김윤섭 (단국대학교 의과대학 내과학교실) ;
  • 박재석 (단국대학교 의과대학 내과학교실) ;
  • 지영구 (단국대학교 의과대학 내과학교실) ;
  • 이계영 (단국대학교 의과대학 내과학교실)
  • Kim, Youn Seup (Department of Internal Medicine, Dankook University College of Medicine) ;
  • Park, Jae Seuk (Department of Internal Medicine, Dankook University College of Medicine) ;
  • Jee, Young Koo (Department of Internal Medicine, Dankook University College of Medicine) ;
  • Lee, Kye Young (Department of Internal Medicine, Dankook University College of Medicine)
  • 발행 : 2004.02.28

초록

연구배경 : 광역학치료는 체내의 풍부한 산소, 외부에서 공급되는 레이저 그리고 레이저 빛에 예민한 반응을 보이는 광감작제를 이용한 새로운 항암치료 방법으로, 그 원리는 체내의 산소와 빛에 예민한 반응을 보이는 광감작제가 레이저에 의하여 화학적인반응을 일으켜 생성되는 단일항 산소와 이에 의하여 유발되는 자유라디칼이 암세포를 손상시키는 것이다. 광역학치료에 의한 세포사의 주요 형태로 아포프토시스가 관여한다고 알려져 있다. 이에 저자들은 A549 폐암세포주에서의 광역학치료에서 세포독성이 광감작제의 농도, 레이저 조사량, 그리고 시간의 경과에 따라서 어떠한 양상으로 나타나는지 그리고 세포사의 특징으로 아포프토시스 유무에 대해서 알아보고자 본 연구를 시행하였다. 방 법 : 폐암세포주로 A549 폐암세포주를 이용하였고, 광감작제로 ALA를, 그리고 레이저는 632nm diode 레이저를 사용하였다. ALA 의 용량은 $10{\mu}g/m{\ell}$, $100{\mu}g/m{\ell}$, 그리고 $1mg/m{\ell}$를 사용하였고 레이저의 조사량은 1.6, 3.2, $6.4J/cm^2$ 이었다. 세포독성검사는 crystal violet assay를 이용하였고 아포프토시스 유무는 Hoechst 33342 와 propium iodide 이중염색 방법을 이용하여 분석하였다. 결 과 : A549 폐암세포주에서 ALA를 이용한 광역학치료시 ALA의 농도증가에 따른 세포독성의 증가가 관찰되었고 또한 레이저의 조사량 증가에 따라서도 세포독성의 증가가 관찰되었다. 그리고 세포독성의 형태는 아포프토시스임을 확인할 수 있었다. 그러나 광역학치료 후 시간의 경과에 따른 세포독성의 변화는 관찰되지 않았다. 결 론 : ALA를 이용한 광역학치료는 A549 폐암세포주의 항암효과가 있음을 알 수 있었으며 이는 아포프토 시스의 유도에 의해 이루어짐을 확인할 수 있었다. 향후 광역학치료-유도성 아포프토시스의 기전에 대한 연구가 필요할 것으로 사료된다.

Background : Photodynamic therapy (PDT) is a new therapeutic method aimed at the selective destruction of cancer cells. The outcome is death of cancer cells through apoptosis or necrosis. The aim of this study was to investigate the characterization of PDT induced cell death in A549 lung cancer cells. Materials and methods : A549 cells were used as the lung cancer cell. 5 aminolevulinic acid (ALA) was used as the photosensitizer and a 632nm diode laser (Biolitec, Germany) as the light source. Cells were incubated with various concentrations of ALA. The 632nm diode laser was then administered for various laser irradiation times. The treated cells were incubated with 24, 48 and 72 hours. The cell viabilities were measured using the crystal violet assay and light microscopy. To observe the cell death mechanism after PDT, cells were observed under fluorescence microscopy after double staining with Hoechst 33342 and propium iodide after PDT. Results : In the crystal violet assay at 24 hours after PDT with a $3.2J/cm^2$ laser irradiation power, the cell viabilities were $89.56{\pm}4.11$, $87.67{\pm}5.48$, and $69.37{\pm}8.84$ with ALA concentrations of 10, 100, and $1mg/m{\ell}$, respectively. In crystal violet assay at 24 hours after PDT with $1mg/m{\ell}$ of ALA, the cell viabilities were $74{\pm}19.85$, $55{\pm}6.1$, and $49.06{\pm}16.64%$ with 1.6, 3.2 and $6.4J/cm^2$ laser irradiation powers, respectively. However, increasing the interval time after PDT did not change the cell viabilities. In the apoptosis assay, photodynamic therapy was inducing the apoptotic cell death. Conclusions : This study shows the apoptotic anticancer effect of photodynamic therapy in A549 lung cancer cells. However, further evaluations with other cancer cells and photosensitizers are necessary.

키워드

참고문헌

  1. Carl D. Update on photodynamic therapy. Curr Opin Opthalmol 2000;11:166-70
  2. Biel MA. Photodynamic therapy and the treatment of head and neck neoplasia. Laryngoscope 1998;108:1259-68
  3. Hayata Y, Kato H, Konaka C, Ono J, Takizawa N. Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest 1982;81:269-77
  4. Lam S, Kostashuk EC, Coy P. A randomized comparative study of the safety and efficacy of photodynamic therapy using Photofrin II combined with palliative radiotherapy versus palliative radiotherapy alone in patients with inoperative obstructive bronchogenic carcinoma. Photochem Photobiol 1987;46:893-7
  5. Moghissi K, Dixon K, Parsons RJ. A controlled trial of Nd-YAG laser vs photodynamic therapy for advanced malignant bronchial obstruction. Lasers Med Sci 1993;8:269-73
  6. Tom GS, Pieter EP. Photodynamic therapy in lung cancer. A review. Photochem Photobiol 1996;36:199-204
  7. Peng Q, Moan J, Nesland JM. Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy. Ultrastruct Pathol 1996;20:109-29
  8. Hampton JA, Selman SH. Mechanism of cell killing in photodynamic therapy using a novel in vivo /in vitro light culture system. Photochem Photobiol 1992;56:235-43
  9. Oleinick NL, Evans HH. The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res 1998;150:S146-56
  10. Moan J, Berg K. Photochemotherapy of cancer: Experimental research 1992;55:931-48
  11. Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol 1992;55:145-57
  12. Zaidi SIA, Oleinick NL, Zaim MT, Mukhtar H. Apoptosis during photodynamic therapyinduced ablation of RIF-1 tumors in C3H mice: Electron microscopic, histopahtologic and biochemical evidence. Photochem Photobiol 1993;58:771-6
  13. Agarwal R, Korman NJ, Mohan RR, Feyes DK, Jawed S, Zaim MT, Mukhtar H. Apoptosis is an early event during phthalocyanine photodynamic therapy-induced ablation of chemically induced squamous papillomas in mouse skin. Photochem Photobiol 1996;63:547-52
  14. Webber J, Luo Y, Crilly R, Fromm D, Kessel D. An apoptotic response to photodynamic therapy with endogenous protoporphyrin in vivo. J Photochem Photobiol B 1996;35:209-11
  15. Zhou G, Shunji C, Jinsheng D, Junlin L, Jori G, Milanesi C. Apoptosis of mouse MS-2 fibrosarcoma cells induced by photodynamic therapy with Zn(II)-phthalocyanine. J Photochem Photobiol B 1996;33:219-33
  16. Noodt BB, Berg K, Stokke T, Peng Q, Nesland JM. Apoptosis and necrosis Induced with light and 5-aminolaevulinic acid-derived protoporphyrin IX. Br J Cancer 1996;74:22-9
  17. Ben-Hur E, Oetjen J, Horowitz B. Silicon phthalocyanine Pc 4 and red light causes apoptosis in HIV-infected cells. Photochem Photobiol 1997;65:456-60
  18. Luo Y, Kessel D. Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol 1997;66:479-83
  19. Fisher AMR, Danenberg K, Banerjee D, Bertino JR, Danenberg P, Gomer CJ. Increased photosensitivity in HL60 cells expressing wild-type p53. Photochem Photobiol 1997;66:265-70
  20. Separovic D, Mann KJ, Oleinick NL. Association of ceramide accumulation with photodynamic treatment-induced cell death. Photochem Photobiol 1998;68:101-9
  21. Boyle RW, Dolphin D. Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol 1996;64:469-85
  22. Kessel D. Symposium-in-Print: Subcellular localization of photosensitizing agents. Photochem Photobiol 1997;65:387-8
  23. Baumgartner, R, Huber RM, Schulz HJ, Stepp H, Rick K, Gamarra F, Leberig A,Roth. Inhalation of 5-amonolevulinic acid: a new technique for fluorescence detection of early stage lung cancer. J Photochem Photobiol B 1996;36:167-74
  24. Uehlinger P, Zellweger M, Wagnieres G, Juillerat-Jeanneret L, van den Bergh H, Lange N. 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells. J Photochem Photobiol B 2000;54:72-80