Interferon-γ 투여가 쥐에서의 Bleomycin 유도 폐 섬유화에 미치는 영향

The Effect of Interferon-γ on Bleomycin Induced Pulmonary Fibrosis in the Rat

  • 윤형규 (가톨릭대학교 의과대학 내과학교실) ;
  • 김용현 (가톨릭대학교 의과대학 내과학교실) ;
  • 권순석 (가톨릭대학교 의과대학 내과학교실) ;
  • 김영균 (가톨릭대학교 의과대학 내과학교실) ;
  • 김관형 (가톨릭대학교 의과대학 내과학교실) ;
  • 문화식 (가톨릭대학교 의과대학 내과학교실) ;
  • 박성학 (가톨릭대학교 의과대학 내과학교실) ;
  • 송정섭 (가톨릭대학교 의과대학 내과학교실)
  • Yoon, Hyoung Kyu (Division of Pulmonology, Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Kim, Yong Hyun (Division of Pulmonology, Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Kwon, Soon Seog (Division of Pulmonology, Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Kim, Young Kyoon (Division of Pulmonology, Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Kim, Kwan Hyung (Division of Pulmonology, Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Moon, Hwa Sik (Division of Pulmonology, Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Park, Sung Hak (Division of Pulmonology, Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Song, Jeong Sup (Division of Pulmonology, Department of Internal Medicine, College of Medicine, the Catholic University of Korea)
  • 발행 : 2004.01.30

초록

연구배경 : 폐 섬유화증의 진행에는 세포외 간질의 대사에 관여하는 gelatinase가 중요한 역할을 하는 것으로 알려져 있으며, gelatinase의 작용은 사이토카인을 비롯한 여러 가지 요소에 의해 조절되는 것으로 알려져 있다. 지금까지 $interferon-{\gamma}$($IFN-{\gamma}$)는 폐섬유화를 억제하는 것으로 알려져 있지만 gelatinase의 작용에 $IFN-{\gamma}$가 미치는 영향은 잘 밝혀져 있지 않다. 이에 저자들은 bleomycin 유도 백서 폐 섬유화 모델에서 $IFN-{\gamma}$가 폐 섬유화에 미치는 영향과MMP-2, -9과 이의 길항제인 TIMP-1, -2 그리고 Th-2 사이토카인의 변화에 미치는 영향을 조사함으로써, $IFN-{\gamma}$가 폐 섬유화증에 미치는 영향과 기전을 연구하고자 하였다. 재료 및 방법 : Sprague-Dawley계의 수컷 흰쥐를 정상 대조군, bleomycin 군, bleomycin+$IFN-{\gamma}$ 군의 세 군으로 나누어, bleomycin 군 과 bleomycin+$IFN-{\gamma}$ 군은 bleomycin sulfate를 생리식염수에 섞어 기관 내로 주입하였고(6 U/kg), bleomycin+$IFN-{\gamma}$ 군은 $IFN-{\gamma}$를 14일간 근육주사 하였다($2{\times}105U/kg$). 실험동물은 3, 7, 14, 28일에 폐를 얻어 hematoxylineosin 염색과 Masson's trichrome 염색을 하여 폐의 염증 반응과 섬유화 정도를 관찰하였고, 폐 조직 내의 hydroxyproline 함량, MMP-2, -9, TIMP-1, -2에 대한 Western blot, zymography와 reverse zymography, IL-4와 IL-13에 대한 ELISA검사를 시행하였다. 결 과 : 1. 폐 염증은 bleomycin 투여 7일째에는 $IFN-{\gamma}$를 투여한 경우 더 심하게 일어났으나(bleomycin 군 : bleomycin+$IFN-{\gamma}$ 군=$2.08{\pm}0.15:2.74{\pm}0.29$, P<0.05), 폐 섬유화는 bleomycin 투여 후 28일째 $IFN-{\gamma}$ 투여에 의해 유의하게 감소되었다(bleomycin 군 : bleomycin+$IFN-{\gamma}$ 군=$3.94{\pm}0.43:2.46{\pm}0.13$, P<0.05). 2. 폐 내 hydroxyproline 함량은 bleomycin 투여 28일 후 $IFN-{\gamma}$ 투여에 의해 유의하게 감소되었다(bleomycin 군 : bleomycin+$IFN-{\gamma}$ 군=$294.04{\pm}31.73{\mu}g/g:194.92{\pm}15.51{\mu}g/g$, P<0.05). 3. Bleomycin 투여에 의해 MMP-2 단백질의 양이 증가되는 소견이 Western blot에서 관찰되었는데 MMP-2의 증가는 bleomycin 투여 14일에 최고에 이르렀으며, $IFN-{\gamma}$의 투여에 의해 bleomycin에 의한 MMP-2의 증가는 억제되었으나 대조군 수준으로 감소하지는 않았다. 4. Zymography 검사에서 bleomycin 투여 3일째에는 활성화된 형태의 MMP-2가 $IFN-{\gamma}$에 의해 유의하게 증가되었으나(bleomycin 군 : bleomycin+$IFN-{\gamma}$ 군=$209.63{\pm}7.60%:407.66{\pm}85.34%$, P<0.05), 투여 14일 후에서는 $IFN-{\gamma}$에 의해 활성화된 상태의 MMP-2가 유의하게 감소되었다(bleomycin 군 : bleomycin+$IFN-{\gamma}$ 군=$159.36{\pm}20.93%:97.23{\pm}12.50%$, P<0.05). 5. Bleomycin을 투여한 후 bleomycin 군과 bleomycin+$IFN-{\gamma}$ 군 모두에서 IL-4의 양이 감소되었으나, 두 군간 차이는 통계적으로 유의하지는 않았고, IL-13은 별 다른 차이가 없었다. 결 론 : Bleomycin에 의한 백서 폐 섬유화 모델에서 $IFN-{\gamma}$는 초기 폐 염증을 증가시키지만 후기 폐 섬유화는 억제시킨다는 것을 알 수 있었다. $IFN-{\gamma}$가 폐 섬유화를 억제하는 것은 MMP-2의 활성화를 억제하기 때문인 것으로 생각한다. 또한 $IFN-{\gamma}$에 의한 MMP-2의 기능 억제는 Th-2 사이토카인을 억제하여 이루어지는 것 같지는 않았다. 본 논문을 기초로 향후 $IFN-{\gamma}$가 MMP-2의 활성화를 조절하는 기전과 MMP-2의 활성화가 폐섬유화에 미치는 영향에 대한 연구가 필요할 것으로 생각한다.

Objectives : The matrix metalloproteinases (MMPs) that participate in the extracellular matrix metabolism play a important role in the progression of pulmonary fibrosis. The effects of the MMPs are regulated by several factors including Th-1 cytokines, $interferon-{\gamma}$ ($IFN-{\gamma}$). Up to now, $IFN-{\gamma}$ is known to inhibit pulmonary fibrosis, but little is known regarding the exact effect of $IFN-{\gamma}$ on the regulation of the MMPs. This study investigated the effects of $interferon-{\gamma}$ on the pulmonary fibrosis and the expression of the lung MMP-2,-9, TIMP-1,-2, and Th-2 cytokines in aa rat model of bleomycin induced pulmonary fibrosis. Materials and methods : Male, specific pathogen-free Sprague-Dawley rats were subjected to an intratracheal bleomycin instillation. The rats were randomized to a saline control, a bleomycin treated, and a bleomycin+$IFN-{\gamma}$ treated group. The bleomycin+$IFN-{\gamma}$ treated group was subjected to an intramuscular injection of $IFN-{\gamma}$ for 14 days. At 3, 7, 14, and 28 days after the bleomycin instillation, the rats were sacrificed and the lungs were harvested. In order to evaluate the effects of the $IFN-{\gamma}$ on lung fibrosis and inflammation, the lung hydroxyproline content, inflammation and fibrosis score were measured. Western blotting, zymography and reverse zymography were performed at 3, 7, 14, 28 days after bleomycin instillation in order to evaluate the MMP-2,-9, and TIMP-1,-2 expression level. ELISA was performed to determine the IL-4 and IL-13 level in a lung homogenate. Results : 1. 7 days after bleomycin instillation, inflammatory changes were more severe in the bleomycin+$IFN-{\gamma}$ group than the bleomycin group (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$2.08{\pm}0.15:2.74{\pm}0.29$, P<0.05), but 28 days after bleomycin instillation, lung fibrosis was significantly reduced as a result of the $IFN-{\gamma}$ treatment (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$3.94{\pm}0.43:2.64{\pm}0.13$, P<0.05). 2. 28 days after bleomycin instillation, the lung hydroxyproline content was significantly reduced as a result of $IFN-{\gamma}$ treatment (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$294.04{\pm}31.73{\mu}g/g:194.92{\pm}15.51{\mu}g/g$, P<0.05). 3. Western blotting showed that the MMP-2 level was increased as a result of the bleomycin instillation and highest in the 14 days after bleomycin instillation. 4. In zymography, the active forms of MMP-2 were significantly increased as a result of the $IFN-{\gamma}$ treatment 3 days after the bleomycin instillation, bleomycin+$IFN-{\gamma}$ group (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$209.63{\pm}7.60%:407.66{\pm}85.34%$, P<0.05), but 14 days after the bleomycin instillation, the active forms of MMP-2 were significantly reduced as a result of the $IFN-{\gamma}$ treatment (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$159.36{\pm}20.93%:97.23{\pm}12.50%$, P<0.05). 5. The IL-4 levels were lower in the bleomycin and bleomycin+$IFN-{\gamma}$ groups but this was not significant, and the IL-13 levels showed no difference between the experiment groups. Conclusion : The author found that lung inflammation was increased in the early period but the pulmonary fibrosis was inhibited in the late stage as a result of $IFN-{\gamma}$. The inhibition of pulmonary fibrosis by $IFN-{\gamma}$ appeared to be associated with the inhibition of MMP-2 activation by $IFN-{\gamma}$. Further studies on the mechanism of the regulation of MMP-2 activation and the effects of MMP-2 activation on pulmonary fibrosis is warranted in the future.

키워드

참고문헌

  1. Schwartz DA, Helmers RA, Galvin JR, et al. Determinants of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1994;149:450-4.
  2. Cottin V, Cordier JF. [Idiopathic diffuse interstitial lung disease]. Rev Prat 2000;50:1901-5
  3. Raghu G, Depaso WJ, Cain K, et al. Azathioprine combined with prednisone in the treatment of idiopathic pulmonary fibrosis: a prospective double-blind, randomized, placebocontrolled clinical trial. Am Rev Respir Dis 1991; 144:291-6
  4. Selman M, Carrillo G, Salas J, et al. Colchicine, D-penicillamine, and prednisone in the treatment of idiopathic pulmonary fibrosis: a controlled clinical trial. Chest 1998;114:507-12
  5. Lukacs NW, Hogaboam C, Chensue SW, Blease K, Kunkel SL. Type 1/type 2 cytokine paradigm and the progression of pulmonary fibrosis. Chest 2001; 120:5S-8S
  6. Selman M, Ruiz V, Cabrera S, et al. TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment Am J Physiol Lung Cell Mol Physiol 2000; 279:L562-74
  7. Ziesche R, Hofbauer E, Wittmann K, Petkov V, Block LH. A preliminary study oflong-term treatment with interferon gamma-1b and low-dose prednisolone in patients with idiopathic pulmonary fibrosis. N Engl J Med 1999; 341:1264-9
  8. Woessner JF, Jr. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 1961; 93:440-7
  9. Snider GL, Hayes JA, Korthy AL. Chronic interstitial pulmonary fibrosis produced in hamsters by endotracheal bleomycin: pathology and stereology. Am Rev Respir Dis 1978; 117:1099-108
  10. Izbicki G, Segel MJ, Christensen TG, Conner MW, Breuer R. Time course of bleomycininduced lung fibrosis. Int J Exp Pathol 2002;83:111-9
  11. Boraschi D, Censini S, Tagliabue A. Interferon-gamma reduces macrophage-suppressive activity by inhibiting prostaglandin E2 release and inducing interleukin 1 production. J Immunol 1984; 133:764-8
  12. Durum SK, Schmidt JA, Oppenheim JJ. Interleukin 1: an immunological perspective. Annu Rev Immunol 1985; 3:263-87
  13. Parks WC, Shapiro SD. Matrix metalloproteinases in lung biology. Respir Res 2001;2:10-9
  14. Woessner JF, Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. Faseb J 1991; 5:2145-54
  15. Ries C, Petrides PE. Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe Seyler 1995; 376:345-55
  16. Shapiro SD. Diverse roles of macrophage matrix metalloproteinases in tissue destruction and tumor growth. Thromb Haemost 1999; 82:846-9.
  17. Bachwich PR, Lynch JP, 3rd, Larrick J, Spengler M, Kunkel SL. Tumor necrosisfactor production by human sarcoid alveolar macrophages. Am J Pathol 1986; 125:421-5
  18. Khalil N, Greenberg AH. The role of TGF-beta in pulmonary fibrosis. Ciba FoundSymp 1991; 157:194-207; discussion 207-11
  19. Chensue SW, Otterness IG, Higashi GI, Forsch CS, Kunkel SL. Monokine production by hypersensitivity (Schistosoma mansoni egg) and foreign body (Sephadex bead)-type granuloma macrophages. Evidence for sequential production of IL-1 and tumor necrosis factor. J Immunol 1989; 142:1281-6
  20. Hyde DM, Henderson TS, Giri SN, Tyler NK, Stovall MY. Effect of murine gammainterferon on the cellular responses to bleomycin in mice. Exp Lung Res 1988;14:687-704
  21. Jaffe HA, Gao Z, Mori Y, Li L, Varga J. Selective inhibition of collagen gene expression in fibroblasts by an interferon-gamma transgene. Exp Lung Res 1999;25:199-215
  22. Lemjabbar H, Gosset P, Lechapt-Zalcman E, et al. Overexpression of alveolar macrophage gelatinase B(MMP-9) in patients with idiopathic pulmonary fibrosis: effects of steroid and immunosuppressive treatment. Am J Respir Cell Mol Biol 1999; 20:903-13
  23. Suga M, Iyonaga K, Okamoto T, et al. Characteristic elevation of matrix metalloproteinase activity in idiopathic interstitial pneumonias. Am J Respir Crit Care Med 2000; 162:1949-56.
  24. Brown PD, Kleiner DE, Unsworth EJ, Stetler-Stevenson WG. Cellular activation ofthe 72 kDa type IV procollagenase/TIMP-2 complex. Kidney Int 1993; 43:163-70
  25. Underwood DC, Osborn RR, Bochnowicz S, et al. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Physiol Lung Cell Mol Physiol 2000; 279:L895-902
  26. Corbel M, Caulet-Maugendre S, Germain N, Molet S, Lagente V, Boichot E. Inhibition of bleomycin-induced pulmonary fibrosis in mice by the matrix metalloproteinase inhibitor batimastat. J Pathol 2001;193:538-45
  27. Betsuyaku T, Fukuda Y, Parks WC, Shipley JM, Senior RM. Gelatinase B is required for alveolar bronchiolization after intratracheal bleomycin. Am J Pathol 2000;157:525-35
  28. Atkinson JJ, Senior RM. Matrix metalloproteinase-9 in lung remodeling. Am J Respir Cell Mol Biol 2003; 28:12-24
  29. Guedez L, Stetler-Stevenson WG, Wolff L, et al. In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest 1998;102:2002-10.
  30. Clark IM, Powell LK, Cawston TE. Tissue inhibitor of metalloproteinases(TIMP-1) stimulates the secretion of collagenase from human skin fibroblasts. Biochem Biophys Res Commun 1994; 203:874-80
  31. Madtes DK, Elston AL, Kaback LA, Clark JG. Selective induction of tissue inhibitor of metalloproteinase-1 in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2001; 24:599-607
  32. Perez-Ramos J, de Lourdes Segura-Valdez M, Vanda B, Selman M, Pardo A. Matrix metalloproteinases 2, 9, and 13, and tissue inhibitors of metalloproteinases 1 and 2 in experimental lung silicosis. Am J Respir Crit Care Med 1999; 160:1274-82
  33. Chen ES, Greenlee BM, Wills-Karp M, Moller DR. Attenuation of lung inflammation and fibrosis in interferon-gamma-deficient mice after intratracheal bleomycin. Am J Respir Cell Mol Biol 2001; 24:545-55
  34. Baecher-Allan CM, Barth RK. PCR analysis of cytokine induction profiles associated with mouse strain variation in susceptibility to pulmonary fibrosis. Reg Immunol 1993;5:207-17
  35. Huaux F, Liu T, McGarry B, Ullenbruch M, Phan SH. Dual roles of IL-4 in lung injury and fibrosis. J Immunol 2003; 170:2083-92