Hydrogen Production by Autothermal Reforming Reaction of Gasoline over Ni-based Catalysts and it Applications

Ni계 촉매상에서 가솔린의 자열 개질반응에 (Autothermal Reforming)의한 수소제조 및 응용

  • Moon, Dong Ju (Reaction Media Research Center, Korea Institute of Science & Technology) ;
  • Ryu, Jong-Woo (Reaction Media Research Center, Korea Institute of Science & Technology) ;
  • Yoo, Kye Sang (Reaction Media Research Center, Korea Institute of Science & Technology) ;
  • Lee, Byung Gwon (Reaction Media Research Center, Korea Institute of Science & Technology)
  • 문동주 (한국과학기술연구원, 반응매체연구센터) ;
  • 류종우 (한국과학기술연구원, 반응매체연구센터) ;
  • 유계상 (한국과학기술연구원, 반응매체연구센터) ;
  • 이병권 (한국과학기술연구원, 반응매체연구센터)
  • Published : 2004.12.30

Abstract

This study focused on the development of high performance catalyst for autothermal reforming (ATR) of gasoline to produce hydrogen. The ATR was carried out over MgO/Al2O3 supported metal catalysts prepared under various experimental conditions. The catalysts before and after reaction were characterized by N2-physisorption, CO-chemisorption, SEM and XRD. The performance of supported multi-metal catalysts were better than that of supported mono-metal catalysts. Especially, it was observed that the conversion of iso-octane over prepared Ni/Fe/MgO/Al2O3 catalyst was 99.9 % comparable with commercial catalyst (ICI) and the selectivity of hydrogen over the prepared catalyst was 65% higher than ICI catalyst. Furthermore, it was identified that the sulfur tolerance of prepared catalyst was much better than ICI catalyst based on the ATR reaction of iso-octane containing sulfur of 100 ppm. Therefore, Ni/Fe/MgO/Al2O3 catalyst can be applied for a fuel reformer, hydrogen station and on-board reformer in furl cell powered vehicles.

Keywords

References

  1. Office of Power Delivery et. al., 'A Multilayer Plan for The Hydrogen R&D Program', 1999
  2. D. T. Krause, J. Mawdsley, C. Rossignol, J. D. Carter, J. Kopasz and M. Krumpelt, 'Autothermal Reforming Catalysis', 2002 Fuel Cell Seminar, Palm Springs, LA, USA, 2002, p. 571
  3. M. Flytzani-Stephanopoulos and G.E. Voecks, 'Autothermal Reforming of Aliphatic and Aromatic Hydrocarbon Liquids', Int. J. Hydrogen Energ., Vol. 8, No. 7, 1983, p. 539 https://doi.org/10.1016/0360-3199(83)90006-X
  4. T. J. Flynn, R. M. Privette, M. A. Perna, K. E. Kneidel, D. L. King, Cooper M., 'Auothermal Reforming Reaction over Catalyst', Soc. of Automotive Engineers, 999-01-0536, 1999, p. 47
  5. Q. Ming, T. Healey, L. Allen, P. Irving, 'Steam Reforming of Hydrocarbon Fuels', Catal. Today, Vol. 77, 2002, p. 51 https://doi.org/10.1016/S0920-5861(02)00232-8
  6. J. J. Schorfheide and A. E. Schweizer, 'Cyclic Reforming Catalyst Regeneration', USP 5391292, 1995
  7. P. L. Bogdan, 'Selective Bifunctional Multimetallic Reforming Catalyst', USP 6495487, 2002
  8. M. Koji, 'Catalyst for Reforming of Methanol and Process of Preparing Same', USP 4501823, 1985
  9. H. Teziya, Y. Tomoki, D. Kojo and W. Dakashi, 'Catalyst for Reforming Hydrocarbon and Method for Preparation There of, and Process for Reforming Hydrocarbon using Said Catalyst', KP2003-0085062, 2003
  10. K. Hagihara and M. Umeno, 'Catalyst for Steam Reforming of Methanol and Method for Producing Hydrogen Therewith', USP 6583084, 2003
  11. O. Okada, T. Tabata and M. Masuda, 'Process for Steam Reforming of Hydrocarbons', USP 5124140, 1992
  12. I. I. Primdahl and G. P. Serra, 'Process for the Preparation of Ammonia Synthesis Gas', USP 5211880, 1993
  13. D. J. Moon, J. W. Ryu, S. D. Lee and B. S. Ahn, 'Partial Oxidation (POX) Reforming of Gasoline for Fuel-Cell Powered Vehicles Applications', Korean J. Chem. Eng., Vol. 19, N. 6, 2002, p.921 https://doi.org/10.1007/BF02707212
  14. D. J. Moon, K. Sreekumar, S. D. Lee, B. G. Lee, H. S. Kim, 'Studies on Gasoline Fuel Processor System for Fuel-Cell Powered Vehicles Applications', Appl. Catal. A: Gen., Vol. 215, 2001, p. 1 https://doi.org/10.1016/S0926-860X(01)00526-9
  15. D. J. Moon, J. W. Ryu, S. D. Lee, B. G. Lee, B. S. Ahn, 'Transition Metal Catalysts for the POX Reforming of Gasoline for Fuel-Cell Powered Vehicles Applications', Korea Patent 0082762, 2003
  16. D. J. Moon, J. W. Ryu, S. D. Lee, B. G. Lee, B. S. Ahn, 'Ni-Based Catalyst for Partial Oxidation Reforming of Iso-Octane', Appl. Catal. A: Gen., Vol. 272, 2004, p. 53 https://doi.org/10.1016/j.apcata.2004.05.009
  17. D. J. Moon and J. W. Ryu, 'Partial Oxidation Reforming Catalyst for Fuel Cell-Powered Vehicles Applications', Catal. Lett., Vol. 89, No. 3-4, 2003, p. 207 https://doi.org/10.1023/A:1025702429061
  18. D. J. Moon, J. W. Ryu, D. M. Kang, B. G. Lee, B. S. Ahn and S. D. Lee, 'Structured Catalyst for POX Reforming of Gasoline for Fuel-Cell Powered Vehicles Applications and A Method of Preparing', Korea Patent Application 2003-0074937, 2003 and US Patent Application 10/830,238, 2004
  19. T. Hijikata, 'Research and Development of International Clean Energy Network using Hydrogen Energy (WE-NET)', Int. J. Hydrogen Energ., Vol. 27, 2002, p. 115 https://doi.org/10.1016/S0360-3199(01)00089-1
  20. D. M, Kang, D. J. Moon, J. W. Ryu, B. G. Lee, S. D. Lee, S. I. Hong, 'Fine Grinding Characterization of Alumina Ground by a Stirred Ball Attrition Mill', Korean Chem. Eng. Res., Vol. 42, No. 5, 2004, p. 518
  21. V. Fierro, V. Klouz, O. Akdim, C. Mirodatos, 'Oxidative Reforming of Biomass Derived Ethanol for Hydrogen Production in Fuel Cell Applications', Catal. Today, Vol. 75, No. 1-4, 2002, p. 141 https://doi.org/10.1016/S0920-5861(02)00056-1
  22. J. M. Ogden, Int. J. Hydrogen Energ., 'Developing an Infrastructure for Hydrogen Vehicles: a Southern California Case Study', Vol. 24, 1999, p. 709 https://doi.org/10.1016/S0360-3199(98)00131-1
  23. C. Song, Catal. Today, 'Fuel Processing for Low-Temperature and High- Temperature Fuel Cells Challenges, and Opportunities for Sustainable Development in the 21st Century', Vol. 77, 2002, p. 17 https://doi.org/10.1016/S0920-5861(02)00231-6