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Abstract.  In this paper, we consider the adjustment of convergence on Color Display Tube (CDT). 
Convergence is a measure of how well the red, green and blue beams are physically aligned with each other to 
strike the same area on the screen. When misconvergence (convergence error) occurs, one way of 
compensating it is to attach several ferrite sheets on the inner part of Deflection Yoke (DY). We suggest an 
optimization model of misconvergence compensation process and report test results for 81 DY samples. As a 
result, more than 90% of the samples could be made to satisfy the required convergence criteria. 
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1.  INTRODUCTION 

We consider the adjustment of convergence arising 
in the manufacturing process of color monitors. The 
structure of Color Display Tube (CDT or Cathode Ray 
Tube (CRT)) is shown in Figure 1 (Chung et al., 1995a, 
Chung et al., 1995b). After three electron beams are 
emitted from R (red), G (green), B (blue) electron guns, 
they are deflected by Convergence and Purity Magnets 
(CPM) rings on the neck and the Deflection Yoke (DY) 
attached to the funnel glass cone. Electron beams which 
have passed through CPM rings are deflected by 
horizontal and vertical magnetic fields generated by two 
coils of DY. Then, the beams pass one of the shadow 
mask holes and collide with red, green and blue 
phosphors placed (painted) on the backside of the CDT’s 
glass in a pattern of dots, and the excited phosphors emit 
light. The beams scan across the screen by the deflection 
mechanism, creating an image that you see. Refer to 
Chung et al. (1995a) and Chung et al. (1995b) for more 
detailed operation and adjustment of CDT. 

To realize a vivid color on the screen, the three 
beams need to hit the same area on the screen. In other 
words, convergence of the beams is of great importance. 

Misconvergence (convergence error) causes sharply 
defined characters or objects to have colored fringes 
(Keller, 1997). 

 
 

Figure 1. Color Display Tube (CDT) and Deflection Yoke (DY) 
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Convergence can be accomplished by design 

optimization of coil distributions of DY (Nishimura et al., 
1997, Joe et al., 1996). But minor misconvergence 
generally inevitable when coils have been wound, can be 
diminished by attaching ferrite sheets to the inner part of 
DY. The misconvergence of the beams (colors) is usually 
characterized by distances between each pair of the three 

† : Corresponding Author  

 



64 Sungsoo Park·Donghan Kang·Hyohyung Lee·Cheol–Kee Hong 

beams measured at some selected control points on the 
screen (see section 2.1). Ferrite sheet has the capability of 
changing local trajectories of the beams and can be used 
to improve convergence (compensate misconvergence) in 
the affected region of screen. 

In the factory, most DYs in the production line 
require convergence adjustments. The workers inspect 
each DY in the line by placing it in the measuring system. 
If misconvergence occurs, they intuitively determine the 
locations where ferrite sheets should be attached to 
correct misconvergence. If the convergence after 
attaching sheets is not satisfactory, they repeat the 
process until good convergence performance is attained. 
Skilled workers generally succeed in correcting 
misconvergence within two or three trials, each requiring 
only a few seconds. However, it takes much more time 
for a novice (an unskilled worker) to correct 
misconvergence. Depending on workers, it generally 
takes six months or even up to one and a half years for 
them to become experts for this process. Therefore, this 
process is a bottleneck in increasing the productivity of 
the color monitors. 

We developed a visualized guidance system to 
increase efficiency of the convergence adjustment 
process and improve convergence quality. Its main 
function is to read out misconvergence of the beams and 
indicate visually the locations where ferrite sheets should 
be attached to compensate misconvergence. It can assist 
the workers in attaching the sheets even if they are 
novices at this process. This paper deals with the main 
algorithm applied in the system. 

There have been a few studies about convergence 
adjustment on CDT. Chung et al. (1995a), Chung et al. 
(1995b) and Song et al. (1999) considered (neuro-) fuzzy 
models to express the relationship between input 
(location of ferrite sheets) and output (change in 
misconvergence). However, they did not report detailed 
experimental results. Verikas et al. (2000) used a neural 
network approach and presented successful results in 
convergence adjustment, but the test environment is 
different from ours and criteria for successful adjustment 
(acceptable range of distances between the beams) are 
not reported in their work. 

In this paper, we develop an integer programming 
model on the misconvergence compensation process. In 
order to use the integer programming model, we take the 
assumption that the misconvergence has a linearity 
property (Song et al., 1999; Verikas, 2000); definition 
and validation of the property are given in the next 
section. By solving the model, we can get the minimum 
number of sheets needed to compensate misconvergence 
in a single step, whereas iterative approaches were used 
in the previous research. 

To find an optimal solution to the integer programming 
model, we apply linear programming (LP)-based branch-

and-bound algorithm (Nemhauser and Wolsey 1988). 
The experimental results of this research show that the 
integer programming approach can be a preferable option 
in compensating misconvergence. 

The remainder of this paper is organized as follows. 
We describe how to identify the misconvergence and test 
if the linearity property holds in section 2. We present an 
integer programming model in section 3. In section 4, we 
test the model through real experiments. Finally, the last 
section presents concluding remarks. 

2.   MISCONVERGENCE AND LINEARITY 
PROPERTY 

2.1  Identifying Misconvergence 

In the process of identifying misconvergence, white 
cross-hatch pattern (called raster) is displayed on the 
screen and sensing devices such as CCD cameras are 
used to evaluate the horizontal and vertical distances 
between the red, green and blue lines comprising a white 
line. Typical test pattern has five horizontal lines and five 
vertical lines, offering 25 cross points. In mass-
production line, however, distances at 17 points are 
considered to be enough to describe whole 
misconvergence characteristics of a CDT. An example of 
raster and such 17 points are shown in Figure 2. 

Misconvergence is usually characterized by six 
parameters for each point which represent the vertical 
and horizontal relative positions (in mµ ) of every beam 
pair: RGx, RGy, BGx, BGy, RBx and RBy. For example, 
RGx (or RGy) is the relative position of the red beam 
with respect to the green beam in horizontal (or vertical) 
axis. If this value is positive, the red beam is positioned 
at the right of (or above) the green beam. Other values 
are defined similarly. By measuring RGx, RGy, BGx and 
BGy, we can also obtain RBx and RBy from the 
relationship: BGx RGx  RBx −= and BGy. RGy  RBy −=  
In short, the misconvergence can be characterized by a 
vector of 102 (=17×6) components, where every six 
values correspond to each control point (see Figure 2). 

Since green beam is usually positioned between red 
and blue beams, sometimes only RBx and RBy are 
considered in the adjustment process (Chung et al., 
1995a; Chung et al., 1995b; Song et al., 1999; Verikas 
2000). However, since that is not always the case actually, 
we consider all six parameters at each point throughout 
this study. 

We determine that a DY satisfies convergence 
criteria if each parameter value lies within a restricted 
range. The required ranges differ depending on the 
measuring points. Points 2, 4, 5, 6 and 8 of axial region 
in Figure 2 are categorized as A zone, the rest of points 
are categorized as B zone. Data in A (or B) zone should 
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have their absolute values not more than  (or T ), 
where . 

AT B

BA
We make one more comment about pre-processing. 

Three beams have different origins and directional 
vectors, and experience different magnetic fields, thus the 
sizes of cross-hatch patterns of three beams can be 
different from each other. If the difference of their sizes is 
significant, we cannot compensate misconvergence by 
attaching ferrite sheets and we need to attach a ferrite 
magnet bar to the rear part of DY. This study assumes 
that the pre-processing had been done and the 
misconvergence is minor so that it can be corrected by 
attaching ferrite sheets. 
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Point RGx RGy BGx BGy RBx RBy 
1 54 13 215 -43 -161 56
2 -15 18 -23 -66 8 84
3 -144 -18 -217 -112 73 94
4 -14 32 134 8 -148 24
5 4 4 0 0 4 4
6 18 15 -105 -33 123 48
7 92 59 165 -93 -73 152
8 29 45 16 2 13 43
9 -38 -68 -160 0 122 -68

10 126 -25 118 -3 8 -22
11 -38 -23 -164 -148 126 125
12 1 84 185 -21 -184 105
13 2 -68 -234 73 236 -141
14 -23 16 209 -39 -232 55
15 -60 -2 -112 -80 52 78
16 80 123 148 -19 -68 142
17 20 -6 -158 76 138 -82

Figure 2. Raster and misconvergence representation at 
17 points 

2.2  Linearity of Misconvergence 

Linearity property is stated as follows: change in 
misconvergence due to a ferrite sheet is independent of 
the current attachment of sheets. In other words, the 
vector of misconvergence change due to several sheets 
can be expressed as the sum of the vectors due to each 
sheet. Song et al. (1999) also defined the linearity and 

said that linearity held at the outer part of the surface of 
DY. But they did not present detailed test results. Verikas 
et al. (2000) used the linearity assumption without any 
tests. We may need sophisticated magnetic field models 
to verify this linearity assumption, which seems to be 
very difficult to obtain. Instead, we tried to verify it by 
experiments, which showed that we might assume the 
linearity property for practical purposes. 

In our study, we tested linearity considering two sheets at 
a time. Theoretically, linearity for three or more sheets holds if 
linearity for two sheets holds. In the factory, rectangular 
sheets are used for compensation of misconvergence. 
Misconvergence change due to a rectangular sheet varies 
depending on its orientation as well as the location. Later, we 
test compensation of misconvergence with circular sheets in 
order not to consider the effect due to the orientation. But, in 
the test of linearity, we use both rectangular and circular 
sheets. 

The location of a sheet to be attached to the inner 
part of DY can be expressed as polar coordinate ),( θr , 
where r  represents the depth (radius from the center) 
and θ  is the angle from positive x-axis (see Figure 3). 
Values of r  vary from 1 to 7 as shown in the figure.  

 
 
 
 

(4, 30)  

(2, 270) 

 
 
 
 
 
 
 
 
 

Figure 3. Coordinate to express location of sheets 

 
We chose a set of four location pairs for rectangular 

sheets, 
 

),( φθS : )},(5, ),{(2, )},(2, ),,2{( φθφθ  
    )} (5, ), {(5, )}, (2, ),{(5, φθφθ , 

 
where φθ   ,  denote the angles of the two sheets in polar 
coordinate, respectively. We fix the orientation of the 
rectangular sheets so that they are aligned to point to the 
center of the DY as shown in Figure 3. We chose a set of 
two location pairs for circular sheets, 

  
),( φθs : )} (4, ), ,4{()}, (2, ),,2{( φθφθ . 

  
We considered 278 angle pairs in all for the test of 
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linearity with the difference of them varying from 0 to 
180.  

To test linearity, we obtain the vector zyyx −+= 21 , 
where 1  and 2  are vectors of misconvergence 
change due to each sheet and  is the vector in case 
that two sheets are attached together. We consider four 
parameters, RGx, RGy, BGx and BGy at the 17 
measuring points, so these vectors have 68 components. 
We conclude that the linearity is satisfied for a location 
pair when we have at most one component of 

y y
z

x  whose 
absolute value exceeds 100 )( mµ . This threshold value 
was set because each component of the vector has 
measurement error up to ±50 mµ . The above criterion 
might seem rather subjective, but we acknowledged that 
it was acceptable since the absolute values of the 
components were not so large. After the test, we found 
that all location pairs satisfied the linearity criteria. As a 
matter of fact, our linearity test may not be complete 
since the number of location pairs is limited. However, 
we concluded that the test result was good enough to go 
further to the next process: modeling and test of 
misconvergence compensation. 

3.  MODELING 

Using the linearity property, we can compute the 
vector of misconvergence change due to several ferrite 
sheets as the sum of the vectors due to each sheet. So, we 
consider an integer programming model to select the 
locations of sheets needed to compensate misconvergence 
among many candidate locations. We consider circular 
sheets of three sizes (they are classified as type 1, 2, and 
3). Note that the locations of the sheets can be chosen 
over the continuous domain (inner part of DY), and with 
more locations, the model becomes more accurate. Here, 
we partitioned the inner part of the DY properly and 
selected a finite number of candidate locations for each 
sheet type (refer to the next section and Table 2). 

The notation and decision variables used in the 
model are as follows. 

 
: Set of candidate locations for sheets of type k,  kN

3  ,1 =≤≤ llk . 
m  : Size of misconvergence vector (or the number  

of parameters), 102=m . 
 : 1 if a ferrite sheet of type k is attached to location  k

jx

kNj∈  and 0, otherwise. 
w  : Vector of the misconvergence after the needed 

sheets are attached, .  ),,,( 21 mwwww …=
k
ja  : Vector of the misconvergence change when a 

ferrite sheet of type k is attached to location  

kNj∈ , . ),,,( 21
k
mj

k
j

k
j

k
j aaaa …=

b  : Vector of the misconvergence for an empty DY, 
),,,( 21 mbbbb …= . 

 
The mathematical formulation of the mixed integer 

programming (MIP) model can be stated as follows. 
 

    Min  (1) ∑ ∑
= ∈

l

k Nj

k
j

k

x
1

subject to 

          for  (2) 

          

∑ ∑
= ∈

+=
l

k
i

Nj

k
j

k
iji bxaw

k1
mi ≤≤1

AiA TwT ≤≤−  for i in A zone (3) 

          BiB TwT ≤≤−  for i in B zone (4) 

    { }1,0∈k
jx  for kNj∈  and 

 
lk ≤≤1  

The objective (1) is to minimize the number of 
ferrite sheets. Constraints (2) define decision variable 

i ’s. Constraints (3) and (4) state that components 
(parameters) of the misconvergence vector should satisfy 
the convergence criteria. Note that the variables i ’s 
have integer values in any feasible solution since both 

 and b are integer vectors. 

w

w

k
ja

Since we consider sheets of three sizes, we may 
obtain a solution such that two or three sheets of different 
sizes are attached to the same location. We did not test if 
the linearity property held in such a special case. 
However, since we assume that misconvergence is minor 
in this research as described in the previous section, 
possibility of such solutions appearing is very low. In fact, 
we obtained no such solutions in real implementation. 

We may use the objective function, ∑ =
=

mi
i iw1  (5) 

instead of the function (1) when near-zero misconvergence 
vector is definitely required. But, it may generate 
solutions requiring more ferrite sheets. Moreover, the 
time needed to find an optimal solution is expected to 
increase when using this objective function. We may 
consider two reasons for this phenomenon. First, the 
second objective function should be linearized to apply 
LP-based branch-and-bound algorithm. In this case, the 
number of variables remains the same by rewriting 

i
l
k Nj

k
j

k
iji bxaw

k
, but the number of constraints 

doubles itself as follows:  and 
+= ∑ ∑= ∈1

i
l
k Nj

k
j

k
iji bxaw

k
+≥ ∑ ∑= ∈1( )i

l
k Nj

k
j

k
iji bxaw

k1  for  Second, 
note that the optimal value of the problem with objective 

+−≥ ∑ ∑= ∈ .1 mi ≤≤
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function (1) is integral. Hence, if z  denotes the 
objective value of the current incumbent solution in the 
branch-and-bound tree, we can prune subproblems 
whose LP objective values are greater than 1−z . This 
can expedite the search procedure considerably since the 
optimal value is usually small . However, we 
cannot expect this effect helps us much with the second 
objective function. We report computational results for 
these two objective functions in the next section. 
However, it should be noted that such near-zero 
misconvergence is not a main concern in the factory. 

)10(<

4.  EXPERIMENTS 

In this section, we describe how to obtain data of 
misconvergence change due to a single sheet and the 
procedure of finding locations of sheets to compensate 
misconvergence. 

We consider three types of circular sheets with 
diameters of 6mm, 8mm and 10mm, respectively. In the 
factory, rectangular sheets are preferred since they 
provide more degree of freedom: location and orientation 
of a sheet. However, since attaching circular sheets 
requires only finding the accurate locations of sheets, 
they seem to be more suitable for the automatic 
attachment indication system. 

4.1  Getting Data of Misconvergence Change 

In order to get misconvergence change due to a 
single sheet, we place a sample DY without sheets at the 
measuring system and measure 102 parameters for 
misconvergence. Then we attach a sheet to one of the 
candidate locations of the DY and get the parameter 
values changed. Since the characteristics of DY’s are 
identical for a model, we chose a sample DY to get data 
of misconvergence change. 

Some parameter values (affected by a ferrite sheet) 
concerning misconvergence change becomes larger as 
the depth of the sheet location approaches to 1 and as 
larger sheet is used. If a parameter value changed is too 
large (200 mµ  or more) for a sheet attached to a certain 
location, the affected region is too wide and it causes 
unexpected side effects, which may require another sheet 
to compensate it. So we do not consider such sheet-
location combinations here. Also, we do not consider 
some sheet-location combinations if all the values are too 
small (50 mµ  or less), which might come from 
measurement error. As a result, candidate locations in the 
first quadrant were selected as shown in Table 1. Using 
the geometrical symmetry of DY, we generated data for 
other quadrants by changing signs of them appropriately, 
and thus actually 370 sheet-location combinations were 

prepared. 
 

Table 1. Candidate locations and sheet sizes used in the 
model  

Depth 
Angle Diameter

1 2 3 4 5 6 7
Number

0 10 O O O O O O O 7 
 8 O O O     3 

10 10 O O O O O O  6 
 8 O O O O O   5 

 6 O       1 

20 10 O O O O O O O 7 
 8 O O O O O O  6 

 6 O       1 

25 10    O O  2 

30 10 O O O O O O O 7 
 8 O O O O O O  6 

 6 O       1 

35 10    O O  2 

40 10 O O O O O O O 7 
 8 O O O O O O  6 

 6 O       1 

45 10 O       1 

50 10 O O O O O O  6 
 8 O O O O O   5 

 6 O       1 

60 10 O O O   O  4 
 8 O O O     3 

 6 O       1 

70 10 O O O   O  4 
 8 O O      2 

 6 O       1 

80 8     O  1 

90 8     O  1 
 

It is very important to obtain accurate data of 
misconvergence change so that we obtain a realistic 
solution. We modified the data before it is used in the 
model as follows: 1) Since a parameter value changes 
slightly as time passes, we used the average after 
measuring it five times. 2) Some parameter values 
concerning the misconvergence change for the points far 
from the attached location are considered to be (or, 
almost near to) 0 but they are usually deviated from 0 a 
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little in actual measurement. So we fixed them to 0. For 
example, when a ferrite sheet of size 10mm is attached at 
(1, 0), all the values of parameters at points except 3, 6, 9, 
13 and 15 are set to 0. 

4.2  Test of Misconvergence Compensation 

We select a sample DY and read out misconvergence by 
placing it at the measuring system. If misconvergence 
occurs, we determine the types and locations of sheets to 
be used to compensate the misconvergence by solving 
the optimization model. If acceptable convergence 
cannot be accomplished after attaching the sheets, we 
repeat the procedure with the DY on hand without 
removing the attached sheets, which is another trial. 

4.3  Results 

Total of 81 DY samples of a 19-inch CDT model 
taken from the production line were tested. Among them, 
five DYs satisfied convergence criteria initially, so they 
were excluded from the test. Thresholds in convergence 
criteria for A and B zones to meet the DY specifications 
are 200 mµ and 300 mµ , respectively. 

As a result, we succeeded in adjusting convergence 
for 70 (93%) DYs within three trials. The numbers of 
successes were 59, 9 and 2 in the first, second and third 
trials, respectively. Thus we can conclude that two trials 
of adjustment are sufficient for most DYs. More than 
three trials, however, were not helpful. Figure 4 shows an 
example of convergence adjustment for a sample DY for 
which we succeeded at the first trial. We can see that the 
adjustment result (c) and the result of the algorithm (d) 
are almost identical. 

Among five DYs for which we failed to compensate 
misconvergence, three DYs were identified as 
inadequately prepared samples. The difference of sizes 
between the red and blue cross-hatch patterns was too big 
and could not be diminished enough by a single ferrite 
magnet bar (applying more than one bar is not 
recommended). For the rest of three DYs, we could not 
identify the reason of the adjustment failure. More 
research is needed for this problem. It is recommended 
that small number of DYs for which misconvergence 
could not be corrected by our algorithm should be 
delivered to skilled workers. 

Table 2 compiles the data for the number of ferrite 
sheets used to correct misconvergence. Misconvergence 
was successfully corrected for 77% of DYs with no more 
than 4 sheets. On average, 3.2 sheets were used for 
misconvergence compensation, whereas workers in the 
factory usually use four or more sheets. About 80% of 
them were of 8mm and 10mm diameters. 

We used ILOG CPLEXTM 6.5 to solve the 
optimization model. It took at most three seconds on 
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(d) Result obtained by the algorithm 

 
Figure 4.  An example of convergence adjustment
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average to get an optimal solution for an adjustment trial 
on a Pentium III PC with clock speed of 500MHz. 
One may also develop his/her own package to solve 
the problem while not using commercial packages if 
desired. 
 
Table 2. Compiled data for the number of ferrite sheets used 

Number of 
sheets 

Number of 
DY samples Percentage Accumulated 

percentage 

1 14 20.0 20.0 
2 12 17.1 37.1 

3 16 22.9 60.0 

4 12 17.1 77.1 

5 7 10.0 87.1 

6 6 8.6 95.7 

7 2 2.9 98.6 

8 1 1.4 100.0 

Total 70 100.0  
 
We finally report a comparative tests for the two 

objective functions presented in section 3. Table 3 shows 
the results for eight DY samples: the objective values 
(and the number of sheets in case of the second objective 
function), the number of branch-and-bound nodes 
generated, and time in seconds. We limited the number of 
nodes to be generated up to 100,000. As we expected in 
section 3, the problem with the objective function (1) for 
the number of sheets yields much shorter times than the 
other function (5) for the sum of the absolute values of 
the expected misconvergence. Actually, we could not 
obtain optimal solutions for all test problems with this 
objective function within the node limit. Consequently, 
we can conclude that employing the alternative objective 
function is impractical in terms of the number of sheets 
as well as the running time. 

We can consider another model that adopts the 
objective function (5) and also limits the number of 
attached sheets to a number . This model may seem 
attractive but we prefer the first model introduced in 
section 3 for the following reasons: 1) the main objective 
should be to minimize the number of sheets since the 
adjust time is proportional to the number and 2) CDT is 
qualified as good if each parameter value is between the 
upper and lower limits. After the tests of the new model 
with  and 10 for the DYs in Table 3, we found 
that all DYs required  sheets and the running time 
mainly depended on the value of . For example, 
setting  resulted in 20.6 seconds on average and 
it is well compared with 2.2 seconds for tests of the first 
model in Table 3.  

N

,5,3=N
N

N
5=N

Table 3. Comparative tests for the two objective functions 

a) Objective function:  (1) ∑ ∑
= ∈

l

k Nj

k
j

k

x
1

DY 
No. 

Optimal 
values 

No. of B&B 
nodes Time (sec) 

1 1 3 0 
2 3 1,599 10 
3 1 6 0 
4 3 280 2 
5 3 271 2 
6 3 295 2 
7 1 6 0 
8 3 344 2 

 
b) Objective function: ∑ =

=
mi

i iw1  (5) 

DY 
No. 

Objective 
values 

No. of
Sheets

No. of B&B 
nodes Time (sec)

1 4,476 15 100,000 633 
2 4,974 19 100,000 689 
3 4,196 16 100,000 613 
4 5,226 20 100,000 701 
5 5,084 17 100,000 564 
6 5,176 14 100,000 523 
7 4,832 15 100,000 662 
8 4,752 16 100,000 717 

5. CONCLUSIONS 

We suggested and tested an optimization model for 
the adjustment of convergence on CDT and succeeded in 
adjusting for more than 90% of DY samples. It is 
noticeable that we did not use rule bases or fuzzy models 
as in the previous studies, which had not provided 
successful results. 

The success seems to result from the following 
factors. First, the automated measuring system for DY 
developed recently was very useful in data acquisition 
process and the specially designed fixture for ferrite sheet 
attachment made the experiment easy to perform. Second, 
we could solve the optimization models in short times. 
The optimization model was designed to minimize the 
number of sheets instead of minimizing the 
misconvergence ( ∑ iw ). The time to get optimal 
solutions is much less with the first objective than the 
second. Moreover, with the second objective, we may 
need to use more sheets to correct misconvergence. Since 
error between expected misconvergence change due to a 
sheet and true one is accumulated as the number of sheets 
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increases, final convergence performance predicted by 
the optimization model and the real performance may not 
coincide exactly. 

When thresholds in convergence criteria become 
tighter, we may need more candidate locations where 
ferrite sheets can be attached. In our experiment, the time 
needed to obtain data of misconvergence change was 
about four hours for a DY model (in fact, the time is 
rather long and some approaches may need to be 
suggested to reduce it further). To use more candidate 
locations, we may need to estimate convergence changes 
for some locations while not measuring them directly. It 
may be possible by using neuro-fuzzy models (Chung et 
al., 1995b) or regression models. 

We expect that the guidance system developed in 
this research will be applied to real production line in 
order to increase efficiency of the convergence adjustment 
process and eventually, to increase productivity of color 
monitors. 
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