Abstract
In a modern semiconductor device manufacturing industry, statistical bin limits on wafer level test bin data are used for minimizing value added to defective product as well as protecting end customers from potential quality and reliability excursion. Most wafer level test bin data show skewed distributions. By Monte Carlo simulation, this paper evaluates methods and sample size effect regarding determination of statistical bin limits. In the simulation, it is assumed that wafer level test bin data follow the Poisson distribution. Hence, typical shapes of the data distribution can be specified in terms of the distribution's parameter. This study examines three different methods; 1) percentile based methodology; 2) data transformation; and 3) Poisson model fitting. The mean square error is adopted as a performance measure for each simulation scenario. Then, a case study is presented. Results show that the percentile and transformation based methods give more stable statistical bin limits associated with the real dataset. However, with highly skewed distributions, the transformation based method should be used with caution in determining statistical bin limits. When the data are well fitted to a certain probability distribution, the model fitting approach can be used in the determination. As for the sample size effect, the mean square error seems to reduce exponentially according to the sample size.