DOI QR코드

DOI QR Code

Improved phenomenological modelling of transient thermal strains for concrete at high temperatures

  • Nielsen, Claus V. (Danish Technological Institute) ;
  • Pearce, Chris J. (Department Civil Engineering, University of Glasgow) ;
  • Bicanic, Nenad (Department Civil Engineering, University of Glasgow)
  • Received : 2003.09.15
  • Accepted : 2003.03.31
  • Published : 2004.05.25

Abstract

Several extensions to the Thelandersson phenomenological model for concrete under transient high temperatures are explored. These include novel expressions for the temperature degradation of the elastic modulus and the temperature dependency of the coefficient of the free thermal strain. Furthermore, a coefficient of thermo mechanical strain is proposed as a bi-linear function of temperature. Good qualitative agreement with various test results taken from the literature is demonstrated. Further extensions include the effects of plastic straining and temperature dependent Poisson's ratio. The models performance is illustrated on several simple benchmark problems under uniaxial and biaxial stress states.

Keywords

References

  1. Bazant, Z. P. and Chern, J. C. (1987), "Stress-induced thermal and shrinkage strains in concrete", J. Eng. Mech., ASCE, 113(10), 1493-1511. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1493)
  2. Bazant, Z. P. and Kaplan, M. F. (1996), "Concrete at high temperatures, Material properties and mathematical models", Longman Group Ltd., Essex, England.
  3. Bazant, Z. P., Cedolin, L. and Cusatis, G. (2001), "Temperature effect on concrete creep modeled by microprestresssolidification theory", Creep, Shrinkage and Durability Mechanics of Concrete and Other Quasi-Brittle Materials (Proceedings 6th International Conference, CONCREEP-6), F.-J. Ulm, Z. P. Bazant and F. H. Wittmann, eds., Elsevier, Amsterdam. 197-204.
  4. de Borst, R. and Peeters, P.P.J.M. (1989), "Analysis of concrete structures under thermal loading", Comp. Meth. Appl. Mech. Eng., 77, 293-310. https://doi.org/10.1016/0045-7825(89)90079-0
  5. Ehm, C. (1986), "Versuche zur Festigkeit und Verformung von Beton unter zweiaxialer Beanspruchung und hohen Temperaturen", PhD thesis, Heft 71, IBMB, Technical University of Braunschweig, Braunschweig, Germany (in German).
  6. Gawin, D., Majorana, C. E. and Schrefler, B.A. (1999), "Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature", Mech. Cohes.-Frict. Mater., 4, 37-74. https://doi.org/10.1002/(SICI)1099-1484(199901)4:1<37::AID-CFM58>3.0.CO;2-S
  7. Gopalakrishnan, K. S., Neville, A. M. and Ghali, A. (1969), "Creep Poisson's ratio of concrete under multiaxial compression", ACI J., 66, 1008-1019.
  8. Khennane, A. and Baker, G. (1992), "Thermoplasticity model for concrete under transient temperature and biaxial stress", Proc. R. Soc. Lond., Series A, 439, 59-80. https://doi.org/10.1098/rspa.1992.0134
  9. Khennane, A. and Baker, G. (1993), "Uniaxial model for concrete under variable temperature and stress", J. Eng. Mech., ASCE, 119(8), 1507-1525. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:8(1507)
  10. Khoury, G. A., Grainger, B.N. and Sullivan, P.J.E. (1985a), "Transient thermal strain of concrete: literature review, conditions within specimen and behaviour of individual constituents", Mag. Concr. Res., 37(132), 131-144. https://doi.org/10.1680/macr.1985.37.132.131
  11. Khoury, G. A., Grainger, B.N. and Sullivan, P.J.E. (1985b), "Strain of concrete during first heating to $600{^{\circ}C}$ under load", Mag. Concr. Res., 37(133), 195-215. https://doi.org/10.1680/macr.1985.37.133.195
  12. Khoury, G. A., Majorana, C.E., Pesavento, F. and Schrefler, B.A. (2002), "Modelling of heated concrete", Mag. Concr. Res., 54(2), 77-101. https://doi.org/10.1680/macr.2002.54.2.77
  13. Neville, A. M., Dilger, W.H. and Brooks, J.J. (1983), Creep of Plain and Structural Concrete, Longman Group Ltd., Essex, England.
  14. Nielsen, C. V., Pearce, C.J. and Bi ani , N. (2001), "Theoretical model of high temperature effects on uniaxial concrete member under elastic restraint", Mag. Concr. Res., 54(4), 239-249.
  15. RILEM TC 129-MHT (1998), "Part 7: Transient creep for service and accident conditions", Mater. Struct., RILEM, 31, 290-295. https://doi.org/10.1007/BF02480669
  16. Schneider, U. (1986), Properties of Materials at High Temperatures, Concrete, 2nd edition, RILEM Technical Committee 44-PHT, Technical University of Kassel, Kassel, Germany.
  17. Schneider, U. (1988), "Concrete at high temperatures A general review", Fire Saf. J., 13, 55-68. https://doi.org/10.1016/0379-7112(88)90033-1
  18. Tenchev, R., Li, L.Y. and Purkiss, J.A. (2001), "Finite element analysis of coupled heat and moisture transfer in concrete subjected to fire", Numerical Heat Transfer, Part A, 39, 685-710. https://doi.org/10.1080/10407780119853
  19. Terro, M.J. (1998), "Numerical modeling of the behavior of concrete structures in fire", ACI Struct. J., 95(2), 183-193.
  20. Thelandersson, S. (1982), "On the multiaxial behaviour of concrete exposed to high temperature", Nucl. Eng. and Design, 75, 271-282.
  21. Thelandersson, S. (1987), "Modeling of combined thermal and mechanical action in concrete", J. Eng. Mech., ASCE, 113(6), 893-906. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:6(893)
  22. Thienel, K.-C. (1993), "Festigkeit und Verformung von Beton bei hoher Temperatur und biaxialer Beanspruchung Versuche und Modellbildung", Ph.D. thesis, Heft 104, IBMB, Technical University of Braunschweig, Braunschweig, Germany (in German).
  23. Thienel, K.-C. and Rostasy, F. S. (1996), "Transient creep of concrete under biaxial stress and high temperature", Cem. Concr. Res., 26(9), 1409-1422. https://doi.org/10.1016/0008-8846(96)00114-7
  24. Ulm, F.-J., Coussy, O. and Bazant, Z.P. (1999), "The "Chunnel" fire. I: Chemoplastic softening in rapidly heated concrete", J. Eng. Mech., ASCE, 125(3), 272-282. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:3(272)

Cited by

  1. 3D numerical analysis of reinforced concrete beams exposed to elevated temperature vol.58, 2014, https://doi.org/10.1016/j.engstruct.2012.11.030
  2. Three-dimensional FE analysis of headed stud anchors exposed to fire vol.2, pp.4, 2005, https://doi.org/10.12989/cac.2005.2.4.249
  3. Thermomechanics failure of RC composites: computational approach with enhanced beam model vol.3, pp.1, 2014, https://doi.org/10.12989/csm.2014.3.1.111
  4. Continuum damage model for thermo-mechanical coupling in quasi-brittle materials vol.50, 2013, https://doi.org/10.1016/j.engstruct.2012.10.007
  5. A fully generalised, coupled, multi-phase, hygro-thermo-mechanical model for concrete vol.43, pp.S1, 2010, https://doi.org/10.1617/s11527-010-9591-y
  6. Post fire blast-resistances of RPC-FST columns using improved Grigorian model vol.107, 2017, https://doi.org/10.1016/j.ijimpeng.2017.05.005
  7. Modelling of transport processes in concrete exposed to elevated temperatures – An alternative formulation for sorption isotherms 2018, https://doi.org/10.1016/j.cemconres.2018.01.012
  8. Softening behavior of quasi-brittle material under full thermo-mechanical coupling condition: Theoretical formulation and finite element implementation vol.281, 2014, https://doi.org/10.1016/j.cma.2014.07.029
  9. Stress–strain constitutive equations of concrete material at elevated temperatures vol.40, pp.7, 2005, https://doi.org/10.1016/j.firesaf.2005.06.003
  10. Concrete strains under transient thermal conditions: A state-of-the-art review vol.127, 2016, https://doi.org/10.1016/j.engstruct.2016.08.021
  11. On modeling of fire resistance tests on concrete and reinforced-concrete structures vol.7, pp.4, 2010, https://doi.org/10.12989/cac.2010.7.4.285
  12. Residual Compressive Strength of High-Strength Concrete Exposed to Elevated Temperatures vol.2019, pp.None, 2004, https://doi.org/10.1155/2019/6039571