References
- Bazant, Z. P. (1996), "Size effect aspects of measurement of fracture characteristics of quasibrittle material", Advanced Cement Based Materials, 4, 128-137. https://doi.org/10.1016/S1065-7355(96)90081-4
- Bazant, Z. P. (2000), "Size effect", Int. J. Solids Struct., 37, 69-80. https://doi.org/10.1016/S0020-7683(99)00077-3
- Bazant, Z. P. and Gettu, R. (1992), "Rate effects and load relaxation in static fracture of concrete", ACI Materials J., 89(5), 456-468.
- Bazant, Z. P. and Pfeiffer, P. A. (1987), "Determination of fracture energy from size effect and brittleness number", ACI Materials.
- Bazant, Z. P. and Planas, J. (1998), "Fracture and size effect in concrete and other quasibrittle materials", CRC Press.
- Duan, K., Hu, X., et al. (2002), "Boundary effect on concrete fracture and non-constant fracture energy distribution", Eng. Fracture Mech., 70, 2257-2268.
- Duan, K., Hu, X., et al. (2002), "Explanation of size effect in concrete fracture using non-uniform energy distribution", Materials Struct., 35, 326-331. https://doi.org/10.1617/13715
- Duan, K., Hu, X., et al. (2003), "Thickness effect on fracture energy of cementious materials", Cement Concrete Comp., 33, 499-507. https://doi.org/10.1016/S0008-8846(02)00997-3
- Duvaut, G. and Lions, J. L. (1972), Les inequations en Mechanique et en Physique. Paris.
- Feenstra, P. H. (1993). "Computational aspects of biaxial stress in plain and reinforced concrete", Doctoral Thesis, Delft University of Technology: 149.
- Georgin, J. F., Nechnech, W., et al. (2002), "A coupled damage-viscoplasticity model for localisation problem", Proc. Fifth World Congress on Computational Mechanics, Vol I, 428 Vienna, Austria.
- Hillerborg, A. (1985a), "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams" 50-FMC Committe Fracture Mechanics of Concrete, 18(106): 285-290.
- Hillerborg, A. (1985b), "Results of three comparative test series for determining the fracture energy Gf of concrete", Materials Struct., 18(107), 407-413. https://doi.org/10.1007/BF02472416
- Hillerborg, A. (1985c), "The theoretical basis of a method to determine the fracture energy Gf of concrete", Materials Struct., 18(106), 291-296. https://doi.org/10.1007/BF02472919
- Hillerborg, A. and Modeer, M., et al. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res. 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
- Hu, X. and Wittmann, F. H. (2000), "Size effect on toughness induced by crack close to free surface", Eng. Fracture Mech., 65, 209-221. https://doi.org/10.1016/S0013-7944(99)00123-X
- Hu, X. Z. (2002), "An asymptotic approach to size effect on fracture toughness and fracture energy of composites", Eng. Fracture Mech., 69, 555-564. https://doi.org/10.1016/S0013-7944(01)00102-3
- Ju, J. W. (1989), "On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects", Int. J. Solids Struct., 25(7), 803-833. https://doi.org/10.1016/0020-7683(89)90015-2
- Kachanov, L. M. (1986), Introduction to Continuum Damage Mechanics. Dordrecht, Martinus Nijhoff.
- Koiter, W. T. (1953), "Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface", Q. Appl. Math, 3.
- Lee, J. (1998), "Theory and implementation of plastic-damage model for concrete structures under cyclic and dynamic loading", Berkeley, University of California: 151.
- Maier, G. (1969), "Linear flows-laws of elastoplasticity: a unified general approach", Lincei-Rend. Sci. Fis. Mat. Nat., 47. 266-276.
- Meftah, F. and Nechnech, W., et al. (2000), "An elasto-plastic damage model for plain concrete subjected to combined mechanical and high temperatures loads", 14th Engineering Mechanical Conference (A.S.C.E), Austin U.S.A.
- Moes, N. and Dolbow, J., et al. (1999), "A finite element method for crack growth without remeshing", Int. J. Num. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- Nechnech, W. (2000), Contribution a l'etude numerique du comportement du beton et des structures en beton arme soumises a des sollicitations thermiques et mecaniques couplees - Une approche thermo-elasto-plastique endommageable. LYON, INSA: 222.
- Needleman, A. (1988), "Material rate dependence and mesh sensitivity on localisation problems", Comp. Meth. Appl. Mech. Eng., 67, 69-86. https://doi.org/10.1016/0045-7825(88)90069-2
- Nooru-Mohamed, M. and Schlangen, B. E., et al. (1993), "Experimental and numerical study on the behavior of concrete subjected to biaxial tension an shear", Advanced Cement Based Materials, 1, 22-37. https://doi.org/10.1016/1065-7355(93)90005-9
- Otsuka, K. and Date, H. (2000), "Fracture process zone in concrete tension specimen", Eng. Fracture Mech., 65, 111-131. https://doi.org/10.1016/S0013-7944(99)00111-3
- Petersson, P. E. (1980a), "Fracture energy of concrete: method of determination", Cement Concrete Comp., 10, 78-89.
- Petersson, P. E. (1980b), "Fracture energy of concrete: practical performance and experimental results", Cement Concrete Res., 10, 91-101. https://doi.org/10.1016/0008-8846(80)90055-1
- Simone, A. and Sluys, L. J., et al. (2003), "Combined continuous/discontinuous failure of cementitious composites", EURO-C 2003,133-137, Swets & Zeitlinger, Lisse.
- Sluys, L. J. (1992), "Wave propagation, localisation and dispersion in softening solids", Doctoral Thesis, Delft University of Technology 173.
- Van Vliet, M. R. A. and Van Mier, J. G. M. (1998), "Experimental investigation of size effect in concrete under uniaxial tension", FRAMCOS -III, Gifu, AEDIFICATIO.
- Wells, G. N. (2001), "Discontinuous modelling of strain localisation and failure", Doctoral Thesis, Faculty of Civil Engineering and Geosciences. Delft: 171.
- Wells, G. N. and Sluys, L. J. (2001), "A new method for modelling cohesive cracks using finite elements", Int. J. Num. Meth. Eng., 50, 2667-2682. https://doi.org/10.1002/nme.143
- Wittmann, F. H. and Mirashi, H., et al. (1990), "Size effect on fracture energy of concrete", Eng. Fracture Mech., 35(1/2/3), 107-115. https://doi.org/10.1016/0013-7944(90)90188-M
Cited by
- Computational Modeling of Damage Development in Composite Laminates Subjected to Transverse Dynamic Loading vol.76, pp.5, 2009, https://doi.org/10.1115/1.3129705