DOI QR코드

DOI QR Code

A coupled damage-viscoplasticity model for the analysis of localisation and size effects

  • Georgin, J.F. (URGC Structures, INSA de Lyon) ;
  • Sluys, L.J. (TU Delft, Faculty of Civil Engineering and Geosciences) ;
  • Reynouard, J.M. (URGC Structures, INSA de Lyon)
  • Received : 2003.12.15
  • Accepted : 2004.04.10
  • Published : 2004.05.25

Abstract

A coupled damage-viscoplasticity model is presented for the analysis of localisation and size effects. On one hand, viscosity helps to avoid mesh sensitivity because of the introduction of a length scale in the model and, on the other hand, enables to represent size effects. Size effects were analysed by means of three-point bending tests. Correlation between the fracture energy parameter measured experimentally and the density fracture energy modelling parameter is discussed. It has been shown that the dependence of nominal strength and fracture energy on size is determined by the ligament length in comparison with the width of the fracture process zone.

Keywords

References

  1. Bazant, Z. P. (1996), "Size effect aspects of measurement of fracture characteristics of quasibrittle material", Advanced Cement Based Materials, 4, 128-137. https://doi.org/10.1016/S1065-7355(96)90081-4
  2. Bazant, Z. P. (2000), "Size effect", Int. J. Solids Struct., 37, 69-80. https://doi.org/10.1016/S0020-7683(99)00077-3
  3. Bazant, Z. P. and Gettu, R. (1992), "Rate effects and load relaxation in static fracture of concrete", ACI Materials J., 89(5), 456-468.
  4. Bazant, Z. P. and Pfeiffer, P. A. (1987), "Determination of fracture energy from size effect and brittleness number", ACI Materials.
  5. Bazant, Z. P. and Planas, J. (1998), "Fracture and size effect in concrete and other quasibrittle materials", CRC Press.
  6. Duan, K., Hu, X., et al. (2002), "Boundary effect on concrete fracture and non-constant fracture energy distribution", Eng. Fracture Mech., 70, 2257-2268.
  7. Duan, K., Hu, X., et al. (2002), "Explanation of size effect in concrete fracture using non-uniform energy distribution", Materials Struct., 35, 326-331. https://doi.org/10.1617/13715
  8. Duan, K., Hu, X., et al. (2003), "Thickness effect on fracture energy of cementious materials", Cement Concrete Comp., 33, 499-507. https://doi.org/10.1016/S0008-8846(02)00997-3
  9. Duvaut, G. and Lions, J. L. (1972), Les inequations en Mechanique et en Physique. Paris.
  10. Feenstra, P. H. (1993). "Computational aspects of biaxial stress in plain and reinforced concrete", Doctoral Thesis, Delft University of Technology: 149.
  11. Georgin, J. F., Nechnech, W., et al. (2002), "A coupled damage-viscoplasticity model for localisation problem", Proc. Fifth World Congress on Computational Mechanics, Vol I, 428 Vienna, Austria.
  12. Hillerborg, A. (1985a), "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams" 50-FMC Committe Fracture Mechanics of Concrete, 18(106): 285-290.
  13. Hillerborg, A. (1985b), "Results of three comparative test series for determining the fracture energy Gf of concrete", Materials Struct., 18(107), 407-413. https://doi.org/10.1007/BF02472416
  14. Hillerborg, A. (1985c), "The theoretical basis of a method to determine the fracture energy Gf of concrete", Materials Struct., 18(106), 291-296. https://doi.org/10.1007/BF02472919
  15. Hillerborg, A. and Modeer, M., et al. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res. 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  16. Hu, X. and Wittmann, F. H. (2000), "Size effect on toughness induced by crack close to free surface", Eng. Fracture Mech., 65, 209-221. https://doi.org/10.1016/S0013-7944(99)00123-X
  17. Hu, X. Z. (2002), "An asymptotic approach to size effect on fracture toughness and fracture energy of composites", Eng. Fracture Mech., 69, 555-564. https://doi.org/10.1016/S0013-7944(01)00102-3
  18. Ju, J. W. (1989), "On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects", Int. J. Solids Struct., 25(7), 803-833. https://doi.org/10.1016/0020-7683(89)90015-2
  19. Kachanov, L. M. (1986), Introduction to Continuum Damage Mechanics. Dordrecht, Martinus Nijhoff.
  20. Koiter, W. T. (1953), "Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface", Q. Appl. Math, 3.
  21. Lee, J. (1998), "Theory and implementation of plastic-damage model for concrete structures under cyclic and dynamic loading", Berkeley, University of California: 151.
  22. Maier, G. (1969), "Linear flows-laws of elastoplasticity: a unified general approach", Lincei-Rend. Sci. Fis. Mat. Nat., 47. 266-276.
  23. Meftah, F. and Nechnech, W., et al. (2000), "An elasto-plastic damage model for plain concrete subjected to combined mechanical and high temperatures loads", 14th Engineering Mechanical Conference (A.S.C.E), Austin U.S.A.
  24. Moes, N. and Dolbow, J., et al. (1999), "A finite element method for crack growth without remeshing", Int. J. Num. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  25. Nechnech, W. (2000), Contribution a l'etude numerique du comportement du beton et des structures en beton arme soumises a des sollicitations thermiques et mecaniques couplees - Une approche thermo-elasto-plastique endommageable. LYON, INSA: 222.
  26. Needleman, A. (1988), "Material rate dependence and mesh sensitivity on localisation problems", Comp. Meth. Appl. Mech. Eng., 67, 69-86. https://doi.org/10.1016/0045-7825(88)90069-2
  27. Nooru-Mohamed, M. and Schlangen, B. E., et al. (1993), "Experimental and numerical study on the behavior of concrete subjected to biaxial tension an shear", Advanced Cement Based Materials, 1, 22-37. https://doi.org/10.1016/1065-7355(93)90005-9
  28. Otsuka, K. and Date, H. (2000), "Fracture process zone in concrete tension specimen", Eng. Fracture Mech., 65, 111-131. https://doi.org/10.1016/S0013-7944(99)00111-3
  29. Petersson, P. E. (1980a), "Fracture energy of concrete: method of determination", Cement Concrete Comp., 10, 78-89.
  30. Petersson, P. E. (1980b), "Fracture energy of concrete: practical performance and experimental results", Cement Concrete Res., 10, 91-101. https://doi.org/10.1016/0008-8846(80)90055-1
  31. Simone, A. and Sluys, L. J., et al. (2003), "Combined continuous/discontinuous failure of cementitious composites", EURO-C 2003,133-137, Swets & Zeitlinger, Lisse.
  32. Sluys, L. J. (1992), "Wave propagation, localisation and dispersion in softening solids", Doctoral Thesis, Delft University of Technology 173.
  33. Van Vliet, M. R. A. and Van Mier, J. G. M. (1998), "Experimental investigation of size effect in concrete under uniaxial tension", FRAMCOS -III, Gifu, AEDIFICATIO.
  34. Wells, G. N. (2001), "Discontinuous modelling of strain localisation and failure", Doctoral Thesis, Faculty of Civil Engineering and Geosciences. Delft: 171.
  35. Wells, G. N. and Sluys, L. J. (2001), "A new method for modelling cohesive cracks using finite elements", Int. J. Num. Meth. Eng., 50, 2667-2682. https://doi.org/10.1002/nme.143
  36. Wittmann, F. H. and Mirashi, H., et al. (1990), "Size effect on fracture energy of concrete", Eng. Fracture Mech., 35(1/2/3), 107-115. https://doi.org/10.1016/0013-7944(90)90188-M

Cited by

  1. Computational Modeling of Damage Development in Composite Laminates Subjected to Transverse Dynamic Loading vol.76, pp.5, 2009, https://doi.org/10.1115/1.3129705