Abstract
This work has been conducted to select appropriate filter materials for removing carbonyl compounds in mainstream tobacco smoke. To investigate of the usability of this filter materials, two types of bead ion exchangers were synthesized and their adsorption characteristics for carbonyl compounds were investigated. Sulfonic acid group-containing cation exchanger and ammonium group-containing anion exchanger were synthesized by the suspension polymerization of glycidylmethacrylate(GMA) and divinylbenzene(DVB) followed by the subsequent functionalization, respectively. The removal efficiency of carbonyl compounds by these two ion exchangers increased in the presence of moisture. However, the amount of carbonyl compounds adsorbed on the anion exchanger was larger than that on the cation exchanger under two levels of water contents tested. This phenomenon seems to arise from the electron delocalization in carbonyl group of the anion exchangers. There was not any significant relationship between the amount of carbonyl compounds adsorbed on ion exchangers and the length of adsorption column. From the large ion exchange capacity and rapid ion exchange reaction rate of the anion exchanger, it is suggested that the anion exchanger may be a good filter material for removing carbonyl compounds in the mainstream tobacco smoke.