Amendments and Construction Systems for Improving the Performance of Sand-Based Putting Greens

골프장 putitng green 개선을 위한 토양 개량제와 green 구조시설

  • Published : 2004.09.01

Abstract

Physical and chemical properties of root zone mixes and methods of green construction are important considerations for improving turf grass quality for putting greens. This study compared Penncross creeping bentgrass (Agrostis palustris Huds.) performance as affected by three root zone construction systems with three amendments (sand, peat, and zeolite). The objective of this study was to determine if an amended California construction system would improve green performance during establishment (1998-1999) and maturation (2000-2001). Three treatments were tested: California ($100\%$ sand), USGA($90\%$ sand and $10\%$ peat, v/v), and California-Z ($85\%$ sand and $15\%$ zeolite, v/v). Treatments were arranged in a randomized complete block with four replicates. Physical and chemical properties of the root zone and bentgrass performance were compared for the treatments. The California-Z treatment had the highest saturated hydraulic conductivity, field infiltration rate and the lowest bulk density. It also had the highest cation exchange capacity and plant available nutrient concentrations among the three treatments. The California-Z treatment produced bentgrass quality and color during green establishment and maturation that were equal to or higher than the California treatment, and consistently higher than the USGA treatment. The addition of an inorganic amendment to the California system improved physical and chemical properties of the root zone and improved quality and color of bentgrass during green establishment. During green maturation, creeping bentgrass in the California-Z treatment was equal (6 of 15 sampling dates) or $20\%$ higher (9 of 15 dates) in quality compared to the California system.

Putting green을 골프장 전체 면적의 $2\%$로 작은 면적이지만 green의 건강한 상태는 골프장의 성공여부를 좌우한다. 이 실험은 University of Missouri-Columbia, Turfgrass Research Center에서 어느 putting green root zone 구조와 토양 개량제가 가장 건강하고 최적의 putting green조건을 유지하는가를 비교하기 위하여 1999년 6월부터 2002년 12월까지 실행되어졌다. California putting green root zone system(30츠의 $100\%$ 모래층 밑에 13cm silt loam 토양층)은 특히 putting green을 가격을 줄일 수 있으며 배수가 잘되고 공기 순환에 있어서는 좋은 조건이지만 낮은 수분 보존량과 잔디에 공급되어지는 영양분이 낮은 것으로 조사 되어지고 있다. USGA(United States Golf Association) putting green root zone system [30cm의 $90\%$ 모래와 $10\%$ Peatmoss (organic material; 유기물) 혼합물층 밑에 13cm 자갈층]은 California system($100\%$ 모래)의 단점을 보완할 수 있지만 년수가 지남에 따라 문제점이 발견되어졌다. 시간의 흐름에 따른 organic matter의 축적과 분해 그리고 잦은 잔디관리 장비의 운행과 player들의 발자국에 의한 green compaction(압축)의 증가가 putting green에서의 수분 침투량(Infiltration rate)과 공기순환을 방해하며 이로인해 잔디의 생장을 저해하며 green의 질은 낮게 만든다. Putting green root zone mixtures에서의 유기물질인 peatmoss사용에 비해 Zeolite와 같은 무기물질의 사용이 토양 물리적, 생리적 특성에 있어 우수함이 조사되어지고 있다. 년수가 지날수록 증가하는 USGA green($10\%$ Peatmoss)의 단점 (organic matter의 축적과 분해 증가, 수분 침투력과 공기순환 감소, 높은 수분함량)에 비해 $10-15\%$ Zeolite(무기물)의 사용이 보다나은 putting green 물리적, 생리적 조건들을 오래토록 유지할 수 있으며 건강한 잔디상태를 보존할 수 있을 것이다. 이 시험은 수정된 Modified California putting green root zone system [25cm의 $85\%$ 모래와 $15\%$ Zeolite(inorganic material ; 무기물) 혼합물층 밑에 18cm silt loam 토양층]이 California와 USGA green system과 비교할 때 보다나은 putting green 조건을 유지하는가를 위해 조사되어졌다. 수정된 Modified California green system이 건강한 putting green을 유지하기 위한 우수한 물리적 조건(높은 수분 침투력과 수분 함량, 낮은 토양밀도)과 생리적 조건(높은 양이온 교환력과 유효 식물영양분 함량)을 가지고 있음이 조사되어졌다. 또한 우수한 putting green 잔디품질을 이 실험 기간동안 유지하였다. 결론적으로 California system($100\%$ 모래)에 $15\%$의 무기물질(Zeolite)이 첨가되어진 Modified California putting green system이 최적의 putting green 조건과 우수한 Bentgrass 잔디품질을 4년 동안 유지하였음을 이 실험을 통해 조사되어졌다.

Keywords

References

  1. American Society for Testing Materials. 2000. Standard test method for saturated hydraulic conductivity, water retention, porosity, particle density, and bulk density of putting green and sports turf root zones, FI815-97. American Society for Testing and Materials, West Conshohocken, PA
  2. Bouwer, H. 1986. Intake rate: Cylinder infiltration. p. 825-844. In A. Klute (ed.) Methods of soil analysis. Part 1, 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI
  3. Curtis, A., and M. Pulis. 2001. Evolution of a sand-based root zone. Golf Course Mgmt. 69(5):53-56
  4. Danielson, R. E., and P. L. Sutherland. 1986. Porosity. p. 443-461. In A. Klute (ed.) Methods of soil analysis. Part 1, 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI
  5. Davis, W.B., J.L. Paul, and D. Bowman. 1990. The sand putting green: construction and management. Publication No. 21448. University of California Division of Agriculture and Natural Resources
  6. Denning, J., R Eliason, RJ. Goos, B. Hoskins, M.V. Nathan, and A. Wolf. 1998. Recommended chemical soil test procedures for the North Central Region. Missouri Agricultural Experiment Station Bulletin, 1001, Columbia, MO
  7. Ervin, E. H., and A. J. Koski. 1997. A comparison of modified atmometer estimates of turfgrass evapotranspiration with Kimberly-Penman alfalfa reference evapotranspiration. International Turfgrass Society Research Journal. 8:663-670
  8. Habeck, J., and N. Christians. 2000. Time alters greens key characteristics. Golf Course Mgmt. 68(5):54-60
  9. Huang, B., X. Lui, and J. D. Fry. 1998. Effects of high temperature and poor soil aeration on root growth and viability of creeping bentgrass. Crop Sci. 38:1618-1622. Huang, Z.T., and A.M. Petrovic. 1994. Clinoptilolite zeolite influence on nitrate leaching and nitrogen use efficiency in simulated sand based golf greens. J. Environ. Qual. 23:1190-1194 https://doi.org/10.2134/jeq1994.00472425002300060009x
  10. Hummel, N. W. Jr. 1993. Rationale for the revisions of the USGA green construction specifications. USGA Green Section Record. 31(2):7-21
  11. Hummel Jr., N.W. 1998. Which root-zone recipe makes the best green? Golf Course Mgmt. 66(12):49-51
  12. Klute, A., and C. Dirksen. 1986. Hydraulic conductivity and diffusivity: laboratory methods. p. 687-734. In A. Klute(ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI
  13. McCoy, E. L. 1992. Quantitative physical assessment of organic materials used in sports turf root zone mixes. Agron. J. 84:375-381 https://doi.org/10.2134/agronj1992.00021962008400030005x
  14. Miller, G. L. 2000. Physiological response of bermudagrass grown in soil amendments during drought stress. HortScience. 35(2):213-216
  15. MSTAT. 1988. MSTAT-C:A microcomputer program for the design, management and analysis of agronomic research experiments. MSTAT/Crop and Soil Sciences. Michigan State University, East Lansing, MI
  16. Nus, J.L., and S.E. Brauen. 1991. Clinoptilolite zeolite as an amendment for establishment of creeping bentgrass on sandy media. HortSci. 26(2):117-119. Petrovic, A. M. 1993. Potential for natural zeolite uses on golf courses. USGA Green Section Record. 31(1):11-14
  17. Petrovic, A.M., and J. Wasiura. 1997. Stability of inorganic amendments of sand root zones. The ASA 1997 Annual meeting Abstracts. p. 134. Anaheim, California
  18. Skogley, C. R., and C. D. Sawyer 1992. Field research. p. 589-614. In A. Waddington (ed.)
  19. Turfgrass. Agron. Monogr. 32. ASA and SSSA, Madison, WI. United States Golf Association, Green Section Staff. 1993. Specifications for a method of putting green construction. USGA, Far Hills, N.J. 33 pages