Development Time and Development Model of the Green Peach Aphid, Myzus persicae

복숭아혹진딧물(Myzus persicae)의 발육과 발육모형

  • Kim Ji-Soo (Organic Farming Technology Division, Crop Life Safety Department, National Institute of Agricultural Science and Technology, RDA) ;
  • Kim Tae-Heung (Faculty of Biological Resources Science, College of Agriculture and Life Sciences, Institute for Biodiversity Research, Chonbuk National University)
  • 김지수 (농촌진흥청 농업과학기술원 친환경농업과) ;
  • 김태흥 (전북대학교 농업생명과대학 생물자원과학부)
  • Published : 2004.12.01

Abstract

The development of Myzus persicae (Sulzer) was studied at temperatures ranging from 15 to $32.5^{\circ}C$ under $70{\pm}5\%$ RH, and a photoperiod of 16:8 (L:D). Mortality of 1st-2nd nymph was higher than that of 3rd-4th nymph at the most temperature ranges whereas at high temperature of $32.5^{\circ}C$, more 3-4nymph stage individuals died. The total developmental time ranged from 12.4 days at $15^{\circ}C$ to 4.9 days at $27.5^{\circ}C$, suggesting that higher the temperature, faster the development. However, at higher end temperature ranges of 30 and $32.5^{\circ}C$, the development took 5.0 and 6.3 days, respectively. The lower developmental threshold temperature and effective accumulative temperatures for the total immature stage were $4.9^{\circ}C$ and 116.5 day-degrees. The nonlinear shape of temperature related development was well described by the modified Sharpe and DeMichele model. When the normalized cumulative frequency distributions of developmental times for each life stage were fitted to the three-parameter Weibull function, attendance of shortened developmental times was apparent with pre-nymph, post-nymph, and total nymph stages in descending order. The coefficient of determination $r^2$ ranged between 0.87 and 0.94.

복숭아혹진딧물(Myzus persicae)의 온도별 발육상을 조사하기 위해 $15^{\circ}C$에서 $32.5^{\circ}C$까지 $2.5^{\circ}C$ 간격으로 8개 온도에서 조사를 하였으며, 상대습도는 $70{\pm}5\%$, 광주기는 16L:8D 조건으로 처리하였다. 일반적으로 진딧물의 약충 단계는 1령에서 4령가지로 구분하나 본 연구에서는 1-2령을 (1st-2nd nymph), 3-4령을(3rd-4th nymph)이라 하여 2단계로 구분하였다. 대부분의 온도에서 사망률은 초기 1-2령이 3-4령보다 더 높았으나 $32.5^{\circ}C$에서는 오히려 3-4령의 사망률이 대부분을 차지하였다. 온도별 발육기간은 $15^{\circ}C$에서 12.4일로 가장 길었고 온도가 상승함에 따라 점차 짧아져 $27.5^{\circ}C$에서는 4.9일로 가장 짧았으나 30에서 $32.5^{\circ}C$까지는 오히려 5.0일과 6.3일로 발육 기간이 길어지는 양상을 보였다. 약충의 발육영점온도는 $4.9^{\circ}C$이고, 유효적산온도는 116.5일도 이었다. 각 온도별 발육률은 변형된 Sharpe와 DeMichele의 비선형 모형에 잘 적합되었다. 발육단계별 발육기간을 표준화하여 누적시킨 값을 3개의 변수를 갖는 Weibull function에 적용하여 보았을 때 1-2령${\to}$3-4령${\to}$ 전체 약충 순으로 발육기간이 짧아지는 경향을 보여 주었고 $r^2$는 0.87-0.94로 나타났다.

Keywords

References

  1. Barlow, C.A. 1962. The influence of temperature on the growth of experimental populations of Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) (Aphididae). Can. J. Zool. 40: 145-156 https://doi.org/10.1139/z62-019
  2. Capinera, J.L. 2000. www. Creatures. Ifas.ufl.edu/veg/aphid/melon aphid. htm
  3. Choi, J.S., C.Y. Hwang, H.G. Goh, I.S. Kim and S.G. Lee. 1996. Insect pests fauna and their spatial distribution pattern on Kale (Brassica olerecea L. var. Acephala DC). Korean J. Appl. Entomol. 38: 489-494
  4. Horsfall, J.L. 1924. Life history studies of Myzus persicae Sulzer. Pennsylvania Agric. Exp. Stn. Bull. 185: 16 pp
  5. Jandel. 1996. Table curve 2D. Automated curve fitting and equation discovery; version 4.0. Jandel Scientific, San Rafel, CA
  6. Kennedy, J.S., M.F. Day and V.F. Eastop. 1962. A conspectus of aphids as vectors of plant viruses. Commonwealth Institute of Entomology, London. 114 pp
  7. Kocourek, F. and J. Beraniova. 1989. Temperature requirements for development and population growth of the green peach aphid Myzus persicae on sugar beet. Acta Entomol. Bohemoslor. 86: 349-355
  8. Lee, J.H. and J.J. Ahn. 2000. Temperature effects on development, fecundity, and life table parameters of Amblyseius womersleyi (Acari: Phytoseiidae). Environ. Entomol. 29: 265-271 https://doi.org/10.1603/0046-225X(2000)029[0265:TEODFA]2.0.CO;2
  9. Liu, S.S. and X.D. Meng. 1999. Modelling development time of Myzus persicae (Homoptera: Aphididae) at constant and natural temperatures. Bulletin Entomological Research 89: 53 - 63
  10. Park, C.K. 2004. Development of sampling plan and population dynamics model of Thrips palmi Karny (Thysanoptera: Thripidae) in greenhouse cucumbers. ph. D. Thesis. Seoul National Univ. 150 pp
  11. SAS Institute. 1999. SAS version 8.1 Intitute Cary, N.C.
  12. Schoolfield, R.M., P.J.H. Sharpe and C.E. Magnuson. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction rate theory. J. theor. BioI. 88: 719-731 https://doi.org/10.1016/0022-5193(81)90246-0
  13. Song, S.S. and N. Motoyama. 1996. Effect of temperatures on the growth of susceptible and malathion resistant green peach aphid strains. Korean J. Appl. Entomol. 35: 297-301
  14. Wagner, T.L., Wu, P.J.H. Sharpe, R.M. Schoolfield and R.N. Coulson. 1984a. Modelling insect development rate: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77: 208 - 225 https://doi.org/10.1093/aesa/77.2.208
  15. Wagner, T.L., Wu, P.J.H. Sharpe and R.N. Coulson. 1984b. Modelling distribution of insect development time: A literature review and application of Weibull function. Ann. Entomol. Soc. Am. 77: 475-487 https://doi.org/10.1093/aesa/77.5.475
  16. Whalon, M.E. and Z. Smilowitz. 1979. Temperature-dependent model for predicting field populations of green peach aphid Myzus persicae (Homoptera: Aphididae). Can. Ent. 111: 1025-1032 https://doi.org/10.4039/Ent1111025-9