A Simple Analytical Model for the Study of Optical Bistability Using Multiple Quantum Well p-i-n Diode Structure

  • Jit, S. (Department of Electronics Engineering Institute of Technology Banaras Hindu University) ;
  • Pal, B.B. (Department of Electronics Engineering Institute of Technology Banaras Hindu University)
  • Published : 2004.03.31

Abstract

A simple analytical model has been presented for the study of the optical bistability using a $GaAs-Al_{0.32}Ga_{0.68}As$ multiple quantum well (MQW) p-i-n diode structure. The calculation of the optical absorption is based on a semi-emperical model which is accurately valid for a range of wells between 5 and 20 nm and the electric field F< 200kV/cm . The electric field dependent analytical expression for the responsivity is presented. An attempt has been made to derive the analytical relationship between the incident optical power ( $(P_{in})$ ) and the voltage V across the device when the diode is reverse biased by a power supply in series with a load resistor. The relationship between $P_{in}$ and $P_{out}$ (i.e. transmitted optical power) is also presented. Numerical results are presented for a typical case of well size $L_Z=10.5nm,\;barrier\;size\;L_B=9.5nm$ optical wave length l = 851.7nm and electric field F? 100kV/cm. It has been shown that for the values of $P_{in}$ within certain range, the device changes its state in such a way that corresponding to every value of $P_{in}$ , two stable states and one unstable state of V as well as of $P_{out}$ are obtained which shows the optically controlled bistable nature of the device.

Keywords

References

  1. D. A. B. Miller, D.S.Chemla, P.W.Smith, A.C.Gossard, and W.T.Tsang, 'Room-temperature saturation character- ristics of GaAs/GaAlAs multiple quantum well structures and of the bulk GaAs,' Appl. Phys., vol.B28, pp.96-97,1982
  2. D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W.T.Tsang, 'Large room-temperature optical non-linearity in GaAs/Ga1-xAlxAs multiple quantum well structures,' Appl. Phys. Lett., vol.41, pp.679-681, 1982 https://doi.org/10.1063/1.93648
  3. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, ' Band edge electroabsorption in quantum well structures: The quantum confined stark effect,' Phys. Rev. Lett., vol.53, pp.2173- 2176, 1984 https://doi.org/10.1103/PhysRevLett.53.2173
  4. D. A. B. Miller, J. S. Weiner, and D. S. Chemla, 'Electric field dependence of linear optical properties in quantum well structures: Waveguide electroabsorption and sum rules,' IEEE J. Quantum Electron., vol.QE-22, pp. 1816-1830, 1986 https://doi.org/10.1109/JQE.1986.1073167
  5. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, ' Electric field dependence of optical absorption near the band gap of quantum well structures,' Phys. Rev. B., vol.32, pp.1043-1060, 1985 https://doi.org/10.1103/PhysRevB.32.1043
  6. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, 'Optical level shifter and self-linearized optical modulator using a quantum well self-electrooptic effect device,' Optics Lett., vol.9, pp.567-569, 1984 https://doi.org/10.1364/OL.9.000567
  7. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, 'The quantum well self-electrooptic effect device: Optoelectronic bistability and oscillation, and self-linearized modulation,' IEEE J. of Quantum Electron., vol. QE-21, pp.1462-1475, 1985 https://doi.org/10.1109/JQE.1985.1072821
  8. G. Lengyel, K.W.Jelley, and R.W.H. Engelmann, 'A semi-empirical model for electroabsorption in GaAs/AlGaAs multiple quantum well modulator structures,' IEEE J. of Quantum Electron., vol. QE-26, pp.296-304, 1990 https://doi.org/10.1109/3.44961
  9. P. J. Stevens, M. Whitehead, G. Parry, and K. Woodbridge, 'Computer modeling of the electric field dependent absorption spectrum of multiple quantum well material,' J. of Quantum Electron., vol.QE-24, pp.2007-2016,1988 https://doi.org/10.1109/3.8536
  10. K. W. Jelly, and R.W.H. Engelmann, 'Experimental determination of electroabsorption in GaAs/$Al_{0.32}Ga_{0.68}As$ MQW structures as function of well width,' Electron Lett., vol.24, pp.1555-1557,1988 https://doi.org/10.1049/el:19881061
  11. W. Stolz, J.C.Maan, M,Altarelli, L. tapfer, and K. Ploog, 'Absorption spectroscopy on $Ga_{0.47}In_{0.53}As/Al_{0.48}In_{0.52}As$ multi quantum well heterostructures, II. Subband structure,' Phys. Rev. B., vol.36, pp.4310-4315, 1987 https://doi.org/10.1103/PhysRevB.36.4310
  12. K. Nishi, and T. Hiroshima, 'Enhancement of quantum confined stark effect in a graded gap quantum well,' Appl. Phys. Lett., vol.51, pp.320-322, 1987 https://doi.org/10.1063/1.98428
  13. H. Yamamoto, M. Asuda, and Y. Suematsu, 'Theory of refractive index variation in quantum well structure and related intersectional optical switch,' J. of Light Wave Technology, vol.6, pp.1831-1840, 1988 https://doi.org/10.1109/50.9252
  14. P.K.Basu, Theory of Optical Processes in Semiconductors: Bulk and Microstructures, Clarendon Press, Oxford, 1997
  15. J. Singh, Semiconductor Optoelectronics: Physics and technology, Mcgraw- Hill, Inc., 1995