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Abstract: The Kantian idea that some judgments are synthetic even in the
area of a priori judgments cannot be accepted in ifs original version, but a
modification of the notions ‘analytic’ and ‘synthefic’ discovers a rational core
of that idea. The new definition of ‘anaiytic’ concemns concepts and makes it
possible to distinguish between analytic concepts, which are effective ways of
computing recursive functions, and synthetic concepts, which either define
non-recursive functions, or define recursive funclions in an ineffective way.
To justify this claim we have to construe concepts as abstract procedures
not reducible to set-theoretical entities.
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Introduction

Whereas the common conviction of contemporary logicians has it that the
extension of the concept a priori is the same as the exfension of the concept
analytic (Martin-Lof in his [1992] being an exception) Kant believed that
some a priori judgments are synthetic. One of his famous formulations that
should define analyticity vs. syntheticity is:

Entweder das Pradikat B gehort zum Subjgkt A als etwas, was in diesem
Begriffe A (versteckterweise) enthalten ist; oder B liegt ganz ausser dem
Begriff A, ob es zwar mit demselben in Verkniipfung steht. Im ersten Fall
nenne ich das Urteil analytisch, im andern synthetisch.

(Critique of Pure Reason, A: 6-7: “Either the predicate B belongs to the
subject A as something that is (covertly) contained in this concept A: or B
lies entirely outside the concept A, though to be sure it stands in connection
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with it. In the first case, | call the judgement analytic, in the second
synthetic.”)

On the other hand, he demonstrated his idea by arguing that the sentence

7+5 =12

being, of course, a prior, is at the same time synthetic according to his

definition.

We want to show that

o Kant's definition is untenable, as well as his argument;
O there is a rational core in his attempt to distinguish analytic from

L

synthetic even in the area of a priori concepts:

then an essential modification of the definition of analytic and synthetic
is necessary.

such a modification should concem concepts in general rather than
judgments;

without a procedural theory of concepts we can hardly imagine what to do:

concepts as abstract procedures can be confronted with the notion of
effective procedurelor: algorithm) .

analytic concepts a prion are effective procedures that compute some
(general/partial) recursive function:

the other concepts, which either define a recursive function in a
non-effective way, ar define a non-recursive function, can be said to be
synthetic;

there are more synthetic concepts a priori than analytic concepts a priori

the analytic vs. synthetic distinction is (in the area of mathematical
concepts) deeply connected with the actual vs. polential infinity
distinction,

Untenability of Kant’s definition and example

In [Couturat 1908] it has been shown that Kant's example, ie.,

7+5 =12
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cannot demonstrate syntheticity a prior according to Kant's definition. This
is because the definition itself is untenable due to Kant's reducing the form
of a sentence to subject-predicate form. What could be a predicate and a
subject in the above example?

There are two options here:

a) The predicate is the expression "= 12':

b} The predicate is ‘=",

Ad a): Then the subject expression is 7 + 5. The respective concept
leads to the number 12 (as Couturat shows in details), and no other
possibility can be discussed. Thus we can say that the (concept given by
the) predicate is contained in the (concept given by the) subject.

Ad b): In this case the ‘subject concept’ is a pair of concepts <{concept of
7 + 5, concept of 12). Since both these concepts lead to the same number
and the identity relation contains just those pairs of numbers where the first
number is the same as the second number we can say that the ‘predicate’,
ie., the concept of identity, extensionally contains the ‘subject pair, so it is
intensionally contained in it.

To sum up, Kant's attempt to define analyticity as well as his attempt to
prove that some a priori sentences are synthetic had to break down because
they were based on the simplifying subject-predicate analysis.

2. A rational core of Kant’s idea

Informally, we can all the same state that all mathematical concepts do
not ‘behave’ in the same way. Some of them are sufficient to identify the
object whose concepts they are, some other need some ‘help’ (given by other
concepts) so that their way to identify the object is in this sense incomplete.
To make this suspicion exact we need some resulfs of the contemporary
logicc The intuitionistic approach fo this problem can be found in
[Martin-Lof 1992]. Here we will try to preserve the classical, realistic
viewpoint.
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As we have seen, the synthetic character of such simple arithmetical
sentences as Kant adduces can be hardly proved. Consider, however, some
non-trivial mathematical problems like Goldbach's conjecture or Fermat's
Last Hypothesis, the former not yet solved, the latter only recently. Is the
distinction between such claims and the elementary arithmetic claims
essential? If so, it surely cannot be connected with the question of a prior:
all mathematical claims are a prior true or a prionn false. Perhaps a
modification of Kant's definition of analytic vs. synthetic-a modification that
would lack any reference to the subject-predicate dogma-could explain the
distinction and make our intuition exact.

3. Concepts

Such a modification can be realized as soon as we decide to generalize the
problem: to consider concepts rather than judgements as for analyticity.

What is logically interesting on expressions is primarily their meaning. We
accept the Fregean ({originally vague) idea that between an expression and
its denotation there is sense, which leads us to the denotation (“die Art des
Gegebenseins™). Further, insfead of ‘sense’ we use the customary term
meaning and-with Church in his [1956] we say that

the meaning of an expression E Is a concept of the denotation of E.

Saying that 7 + 5 = 12 we say that the concept expressed by this
statements is a concept of the truth-value T, similarly 7 + 5 expresses a
concept of the number 12 and ‘12" expresses another concept of the same
number. Our modification of the notion of analyticity will be connected with
this kind of generalization. Our question is then:

Are some a priori {in particular, mathematical) concepts synthetic?

What do we mean by ‘concept’?

The depsychologisation of the category CONCEPT (starting with Bolzano
in [1837] and Frege in the 90s) can be realized in two fundamentally distinct
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ways (see [Materna 19981, [Materna 2000]). One of them consists in some
such precisification which results in defining concept as a set-theoretical
entity. (See [Frege 1891], [Frege 1892] as a classical example.) This way is
connected with essential problems. One of them is that the distinction
between an universal and a way of its grasping vanishes: a concept of the
set of primes would be, for example, identical with this very set, which
contradicts the intuitive idea that one and the same object can be identified
by many distinct concepts. (For this important idea see [Bolzano 18371) A
general obgction fo the sef-theoretical explication of concept can be
formulated by a quotation from [Zalta 1988, 183]:
[Allthough sets may be useful for describing certain  structural
relationships, they are not the kind of thing that would help us fto
understand the nature of presentation. There is nothing about a set in
virtue of which it may be said to present something to us

Bolzano in [1837] and Bealer in [1982] suggest (not very explicitly)
another way. Concepts should be structured Considering concepts as being
identical with (possible) meanings we can see some link to Cresswell's idea
of structured meaning (see, e.g.[Cresswell 1985]). A systematic realization of
this idea (based on transparent intensional logic) can be found in [Matemna
1998, [Duzi 2003].

The resulting theory could be characterized as a procedural theory of
concepts (so ‘PTC’). Before we say more in terms of transparent intensional
logic (TIL), let us informally suggest the core of PTC.

Concepts are conceived of as abstract procedures that (in the better case)
result in identifying an object. So they are structured in the ‘algorithmic
sense rather than in the mereological sense (as consisting of parts). As
abstract procedures they are not spatially and temporally localizable, as
abstract procedures (instructions’) they are not reducible to set-theoretical
objects. They consist of ‘intellectual steps, ‘instructions’ (both these
expressions are metaphors, of course), which are in principle derivable from
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the structure of the given expression. This idea can be made precise when
the respective definitions are formulated within the system of TIL.

3a. Constructions

Exact definitions of constructions can be found in several books and
articles: here we refer to [Tichy 1988] and [Materna 1998]. The most
relevant points will be now informally explained.

The TIL language is fully transparent: all the semantically salient features
are inherently present. In particular, we need to know the type of the
denoted entity and the way of its identifying, ie. the construction of the
denoted entity. Moreover, we need not only to use constructions, but also to
mention them within the theory. In such a case the denoted entity is a
(less-structured) oconstruction, and it is identified by a more structured
construction of a higher order.

Thus the ontology of TIL is organised into a two-dimensional infinite
hierarchy, which at the lowest level has to stem from a certain base. TIL is
an open system and the choice of the base is arbitrary. Here we will need
only the following atomic (basic) types: o (the set {T.F} of truth-values),
t (the set of real numbers), and/or ¥ (the set of natural numbers). The
remaining atomic types, ¢ (the set of individuals) and @ (the set of
possible worlds) are needed when empirical objects are constructed
(propositions, properties, relations-in-intension, magnitudes, efc.: in general,
intensions in the sense of Possible-World Semantics), which is not the case
in the area of mathematical objects.

The “horizontal level” of a type is increased by the rule of forming partial
functions: if @, B1, -, B, are types then the collection of partial functions
B1 X X B, —a isa type denoted (¢ £, -F.,).

The “vertical line” increases the order of a construction: Entities of the 1*
order type are not structured from an algorithmic point of view, they are
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not procedures-constructions, nor do they involve constructions in their
domains. Collection of constructions identifying 1% order entities forms a type
*) (of arder 2). Constructions identifying entities of order 1 and 2 form a
type *; (of order 3). And so on - *3, %,

The technical inspiration goes from typed A -calculus. To be a little bit

more formal, let us characterize four most important kinds of construction.

- For every type there are countably infinitely many variables at our
disposal, where a variable is a kind of construction which constructs
objects dependently on valuation: they v-construct objects, where v is a
parameter of valuation. The usual letters x, ¥, z x, X».. are names of
variables.l)

- Where X is any object (including constructions), %% is a construction
called trivialisation. It constructs X without any change. (The importance
of trivialisation can be appreciated in particular in the ramified
hierarchy.)

- Composition, [X Xi..Xn), consists in applying the function (type scheme
(@ B1.Bm) v-constructed by X to arguments (of types B 1, B m
respectively) v-constructed by Xi...Xm It can be v-improper, ie.,
v-construct nothing (the constructed function may be undefined on the
given argument).

- Closure, [A x1.%m X] v-constructs a function in the well-known way
(see A ~calculus).

(Notation. An object O is of a type @ : O/a .
A construction X identifies an entity of type @ : X — a )
Classes of objects of type @ belong to the type (0 @ ) (as characteristic
functions), relations of objects of types B 1...8 m belong to the type (o B 1.
B ), the basic arithmetical operations (on real numbers) belong to the type
(r Tt ) etc. Also logical objects like truth functions, quantifiers etc. are a

1) Constructions are extra-linguistic objects, so variables have to be defined as above. No
construction contains al linguistic expression!
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kind of function (types, (0 0 ), (0 00 ), (o (o7 )) etc)?) Higher-order
entities are hyperintensional involving constructions: * (0 *3), -

All the objects of the types of order 1 are sef-theoretical objects. The idea
of constructions has been motivated by the important fact that there is a
fundamental difference between an object and the way it is given
(constructed). One and the same object can be ‘given’ in (theoretically
infinitely) many ways, and ignoring this fact leads very often to
misunderstandings (to a ‘doubletalk’). (An innocent example: How many
logically necessary propositions are there? Just one: it can be given by
infinitely many constructions, encoded by sentences of a language.) Thus
constructions are no more set-theoretical objects. They are structured, and
their components are particular insfructions: the construction as a whole
determines particular roles of its components.

Constructions themselves do not contain any letter or bracket, so the
construction

[Ax [% x %]
constructs the (characteristic function of the) set of posifive numbers, it is
an instruction whose particlar components and their ‘roles’ are
unambiguously given by the definitions of closure and composition. This
abstract instruction cannot contain letters, brackets, ‘A ",

Constructions define hyperintensionality {see [Cresswell 1975]). Concepts
(potential meanings) are hyperintensional. Now we can define concepts.

3b. Concepts as closed constructions

Since constructions have been introduced as explications of abstract
procedures it is obvious that our explication of concepts is done in terms of
constructions. Concepts should identify objects, constructions (v-)construct

2) Some resemblance to Montague is obvious, The distinctions are relevant but there is no space
here for explaining why TIL rather than Mentague has been chosen here.
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objects. Some concepts are empty, some constructions are (v-)improper.
Constructions, as representatives of hyperintensionality, are (potential)
meanings®, concepts should be identified with (potential) meanings
{Church). So it seems that concepts are at least a kind of construction. The
only specific feature of concepts is that they should identify objects without
any dependence on a parameter, ie, in our case, on the valuation
(v-constructing). To be a concept a construction should contain no
occurrence of a variable that would not be bound (either via A, or via
trivialisation, see [Materna 1998]). Thus concepts (of order n) are closed
constructions (of order n).
(A complication can be stated here: constructions

Ax [ x%]
and

Ay [y %]
are distinct but they represent one and the same concept. Similarly we
would like to say the same in the case of constructions

%

and

Axy [ xyl.
This problem has been solved in one way in [Materna 1998] and in another,
better way in [Hordk 2001], see also [Duzi 2003]. The result is that our
identification of concepts with closed constructions can be maintained.)
An important definition:
Let X be an object that is not a construction. Then °X is a simple concept.

Notice that a simple concept identifies the respective cbject immediately,

without using any other concept, It is simple also because it consists of just
one instruction.

3) Sense (meaning) as an algorithm: see [Moschovakis 1990].
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4. Finitism

Let us return to the most popular case of analytic vs. synthetic statements
(a prior). Any such statement (we confine ourselves to mathematical
statements) expresses a concept of a truthvalue. We could perhaps propose
the following explication:

Explication I. (First attempt)

A concept C of a truth-value is analytic if it identifies the truth-value in
finitely many steps using just those concepts that are its components (ie.,
subconstructions of C).

The obvious generalization:

Explication I .

An a priori concept C is amalytic if it identifies the object in finitely many
steps using just those concepts that are its components. Otherwise C is
synthetic.

To see that this explication is not suitable let us consider simple concepts
(see 3b.). The immediate identification means simply that the object has
been identified, and that finitely many steps (viz. one) have been applied.
Thus every simple concept would be analytic,

This result seems to contradict our basic intuition. For take, eg. the
simple concept %Prime(-numbers). Only one instruction has been applied and
the set of primes has been identified. Is it thinkable? Well, it is, namely if
he who possesses this concept is God himself, Nobody other can grasp actual
infinity,

To handle the problems of this kind we have to make more precise the
notion of step. Every construction consists of only a finite number of steps,
Instructions. Yet every instruction contained in a construction is connected
with some (number of particular abstract actions, which we will call)
executing steps. Returning to our elementary example, the construction A x
[ x %] (x = 7) consists of three instructions:
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- Identify the relation ),

- identify the number 0,

- for any real number k apply ) to the pair <k 0.

Here for example the third instruction is a rather suspect: though it does
not appeal to the actual but only potential infinity, it commands to grasp
any real number! Doesn't it involve an infinite number of ‘executing steps™?
As soon as we replace the type t (of real numbers) by type v (the set of
natural numbers), so that the variable x ranges over ¥ , the third instruction
is no doubt easily executable,

Knowing the concept, we understand these instructions. Does it mean that
these instructions are always executable? The realist (Platonic) answer
would be YES: if it is not executable by a human being with limited
cognitive capacities, then it suffices that it can be executed by a
hypothetical being whose intellectual capacities may exceed our limited ones.
However, an intuitionist finds the knowledge of instructions that are always
executable (possibly by a hypothetical being) to be a rather obscure notion.
The difference between (Platonic) realism and intuitionism consists in the
following claim: where the intuitionist says that no object is present, the
realist says that the respective concept is syntheticd). (Cf. %Prime as the
instruction “grasp the (actually infinite) set of primes”). It follows from this
that, in order to objectively distinguish between realist / intuitionistic view,
we should avoid an explicit appeal to our intellectual capabilities. In other
words, we are going to define “feasibly executable concepts” without any
reference .to psychological content of any-being’s capabilities. We also rule
out some candidates for the “feasibility criterion” as formulated by the
“strict finitism™®), which cover two (conflicting) theses: a) that there is an
upper bound B, independently of time, to the size of mathematical
inscriptions such that if some n > 2° then the numeral n cannot be

4) True, some intuitionists say that the object is not well~defined, which is, after all, not as distinct
from the realist view.

5) See [Dubucs, Marion 2003]
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presented, ie, it is not feasible, and b) the thesis that identifies feasible
computability with polynomial-time computability. In our approach to the
problem any bounds should remain hidden and we want to reflect limitations
to human cognitive capabilities in a structural manner - in terms of a
structured concept / construction.

A new explication could be:

Explication II. (Second attempt)

An a prori concept C is amalytic if it identifies the obect in an effective
way using just those concepts that are its components. Otherwise C is
synthetic.

This explication needs, however, some comment: we have to define in a
more precise way the notion of an effective identifying construction.
Intuitively, any instruction involving actual infinity is not effective. Thus the
concept *Prime seems to be synthefic: the respective executing step is only
one: grasp the infinite set as an actual infinity. Since we know, however,
that the set of primes is recursively enumerable, there must be an analytic
concept equivalent to the concept “Prime. If we have other simple concepts
at our disposal, for instance, the concept of Card{inality of a set of natural
numbers / ¥ (o v)) and the concept of Div(isibility-relation between
natural numbers / o ¥ v ), we can replace the synthetic concept *Prime by
an analytic complex concept numbers that have exactly two factors:

Ax "= "Card A y ['Div x ¥] %2]
This construction identifies the set of primes in an effective way, because it
actually identifies only a pofential infinity. The procedure consists of the
following steps:

- Take any natural number (x)

- Compute the (finite) set F of factors of x (4 y..)

- Compute the number N of elements of F (Card 4 y...)

-If N = 2 then return True, otherwise False
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Note that our identifying sets with their characteristic functions is important:
it makes it possible to specify infinite sets in a recursive way. The procedure
does not supply the actual infinity: it only ‘decides, answers Yes or No to
the question “Is x a prime”? for any x. True, to obtain the whdle sef, we
would have to repeat the above steps infinitely many times (4 x), which is
not as bad, because each time the steps are perfectly executable,

5. Trivialisation and “grasping”.

We have to admit that the way the trivialisation has been defined is not
definite enough in the present context. Imagine, for example, that the
trivialisation of identity in the concept of primes (see above) were
interpreted as follows:

grasp the relation =
(and apply it to the pair <N, 2, where N is the result, for the given x, of
%Card A y [*Div x y)).

It could be interpreted in this way: trivialisation should “construct =
without any change” according to our definition. Yet the relation = is an
infinite relation, ie., its characteristic function (over the type v ) is infinite
in the sense that it is defined on infinitely many ordered pairs of (natural)
numbers, “Grasping” this function means “grasping” actual infinity, which is
incompatible with finitism: besides, before to apply this function to some
pair of numbers this whole infinite function would have to be constructed,
which is certainly not an effective way of construcling.

The same considerations hold for any trivialisation of infinite objects. The
procedures conceived of as constructions should, however, bear finite
character whenever it is possible. Consider, e.g., such an infinite function as
the successor in Peanos arithmetic. Suc / (v v ) is a function that
associates each natural number with its immediate successor. Thus the
construction

[°Suc 0]
constructs the number 1 (in other words, it is a concept of the number 1).
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The trivialisation "Suc does not mean that the whole function is constructed
with its¥o arguments, and the above construction of the number 1 cannot be
interpreted in such a way, ie, as if first this whole function Suc were to be
constructed and then (1) applied to 0. The trivialisation “Suc must be conceived
of as the recursive procedure, for example, a respective Turing machine, This is
well compatible with the definition: the recursive procedure really constructs
Suc without any change. The only distinction from the “¥o”-variant consists in
taking into account only pofential infinity.

Interpreting trivialisation in this way, ie, as avoiding actual infinity
wherever it is possible, we can state that the following explication should be
the adequate one:

Explication I

The amalytic concepts are just those constructions which construct the

respective objects in a finitary way: neither actual infinity nor calling other

concepts is present.

(Compare with a formulation in [Fletcher 1998], p.52:
The very simplest type of construction allows just a single atom (call it
‘0) and a single combination rule (given a construction x we may
oonstruct S(x) )} with no associated conditions: .. (Emphasis ours -
D+M) )

Remembering” Church’s Thesis we can state that our identification of
concepts with constructions (ie, a ‘procedural theory of concepts) makes it
possible to identify analytic concepts with constructions that finitely construct
recursive functions. This formulation admits that a concept can construct a
recursive function in a non-finitary way®’. This will be shown in the next

section,

6) An important remark: Functions are construed here as being mappings, So recursive functions
are also mappings, but such that there is an effective way of computing these mappings, This
distinction is sometimes captured by terms ‘extensional function’ vs. ‘intensional function’.
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6. Analyticity and conceptual systems

Consider a relation 4 xy R with R effectively computable and the following
function: 7

the least number y such that R(x, y) if 3y R(x y)
ey Rlx y) =

0 otherwise

This definition (ie, the underlying concept of it) as such does not
determine an effective procedure (see [Kleene 1952], p.317). In some cases,
however, R is such a relation that the respective effective procedure exists,
but this procedure is not attainable by the above definition: there is another
definition the underlying concept of which is an effective procedure. (Such a
case is given by the equation

ax + by =c¢
for a, b, ¢ positive integers: the respective effective procedure is the concept
underlying the well-known Euclid s algorithm.)

So we have two concepts C and C', where C is equivalent to C' but is-
unlike C-an effective procedure,

Another such case are the concepts of the number # . Let @ be the type
of circles. The type of Clircurnference of a circle), as well as of Dliameter
of a circle) is then (r @ ). 7 is an abbreviation the definiens of which can
be simply written as (¢ is this time the “descriptive operator”, x ranges
over T,y ranges over @ ):

¢ x Vyx = Cly) / D{y)
In the respective concept C and D can occur as 'C, °D, which-together with
the quantifier-makes it impossible to effectively calculate the number = .
The same number, as an irrational number, can be construed as a function
F. type (v v ), that associates the & natural number with the & number
in the infinite expansion of # . This function is recursive in that there is an
effective procedure that computes for any natural number the value of F in
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finitely many steps. Now the above definition cannot determine this
procedure if °C, °D are simple concepts. But a more realistic idea consists In
the assumption that the concepts of C, D are not simple, that C, D are
defined in some system thaf is based on other simple concepts so that the
ferms diameter, circumference are only abbreviations the definiens of which
are such that the effective procedure computing F could be determined by
the above definition. Actually, this assumption can be refuted. It suffices to
look at the quantifier over circles. On the other hand, the effective concept
is given by the formula for calculating the sum of an infinite series. The
respective concept handles pofential infinity only. Again, we have got some
‘ineffective’ concepts and a genuine ‘algorithmic’ concept.

An interesting question arises in connection with the procedural theory of
concepts. Let us accept the last explication of analytic concepts (a prior).
Then synthetic concepts a priori are of two kinds: Either they define a
non-recursive function or they define a recursive function in a non-effective
way (using actual infinity). Assuming-as we do-that concepts are objective
and are discovered rather than created we can formulate an interesting
consequence:

There are more synthetic than analytic concepts a priori,
The proof is simple: There are uncountably many functions while only
countably many (partial) recursive functions, -

The second kind of synthetic concepts a priors, viz. the concepts that define
recursive functions in an ineffective way, is interesting and inspires us to the
following question:
(Q) Under which conditions can an ‘effective’ counterpart of an
neffective’ concept be discovered?

This question looks like a methodological one, and its answering can be of
some interest for methodology but primarily it belongs to the dass of
problems connected with the procedural theory of concepts, so to the class of
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logical questions. We will need the notion of conceptual system (see
{Materna 19981).
Definition
Let G,...Cn be simple concepts (see the end of section 3) and V the set of
all variables. A conceptual system (over Ci,...Ca) is a tuple with { C....Ca,
V } as the first member and the inductive definition of constructions
(confined to handling Ci,..,Ca) as the second member. The tuple makes it
possible to create all and only such concepts whose simple subconcepts are
members of { C,,...Cx }. Where Cysy,... are such ‘derived’ concepts we will
briefly speak about the set

{ Cllla } U {Goey, .}
as about a conceptual system. The members of the set { Ci..Cs } are
primitive concepts of the given conceptual system, the members of the
second set can be called derived members. -

It is obvious that the set of primitive concepts unambiguously determines
the set of derived concepts,

To illustrate the connection between our question (Q) and the above
definition Jet us briefly comment the case of Fermat’s Last Theorem (FLT).
FLT can be written in a usual way as the statement (a b ¢ n positive
integers) :

Vaben (n>2 2 —(a"+b° = ¢l

The history of the proof of FLT is fascinating particularly because of the
fact that between Fermat’s formulation and the final proof about three
hundred years went by, This fact can be seen as a good motivation of our
question (Q): we can also ask whether this fact is a contingent historical
fact, ie. whether it could have been possible to discover the proof earlier, in
particular at the time of the first formulation of FLT (as Fermat himself
suggested). This last question is a Yes-No question, and the answer will be
deducible from the answer to the question (Q), which is a Wh-question.
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Now the frame of the proof of FLT is extremely simple. The scheme
thereof is:
—FLT implies a sentence A
A senfence B implies —A
B holds
~FLT

The problem is that the first and third premises require acquaintance with
some concepts that can be derived in such a conceptual system that nobody
before the second half of the 20th century had at his disposal. For take, eg.,
the simple concepts that are subconcepts
of the concept that underlies the first formulation of FLT:

Oy, ®(multiplication), *+, "=, %exp (exp xy = x"):

Clearly, neither these concepts nor their decompositions nor their
combinations suffice fo derive those concepts that were necessary for the
final proof (elliptic curves, modularity, stability, etc.). In the efernal Platonic
realm (excuse me, please) all potential conceptual systems ‘exist’ but in our
vale of tears time is important, so we have to state that an analytic concept
underlying FLT could not have been discovered before other conceptual
systems than those ones that were known before the 20th century became a
part of mathematics.

(In a sense, of course, the fact of this late’ discovery is a contingent fact.
For imagine an ingenious mathematician who was able to define all those
concepts that were necessary for proving FLT. Would the existence of such
a mathematician be logically impossible? Surely not: we could at most claim
that it was historically impossible, assuming that historical modalities were
well defined. Thus there are possible worlds where a mathematician has
proved FLT, say, in the 18th century. This is, however, not an important
problem from our
viewpoint.)

Fermat's formulation represents a non-effective, ie., a synthetic concept a
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prior;, due to the universal quantifier, whereas the contemporary proof of
FLT represents its analytic counterpart. Here 1 would like fo quote again
Fletcher [1998], p.53:

[tlhe distinction between finitism (based on mere ‘combinatorial’
considerations) and intuitionism (which includes non-combinatorial notions
such as proof...

(See the following Remark.)
If proof is admitted as representing a concept (no great problem for TIL)
then the concept underlying the proof of FLT is an analytic counterpart of
the synthetic concept that underlies Fermat's first formulation thereof.
Remark: Ad analytic counterparts of synthetic concepts: Let us compare
this conception with what Fletcher (in [1998, 105]) characterizes as the
“usual account of the distinction” between finitist and intuitionist reasoning.
The latter admits - unlike the former -
properties, such as being a proof of a formula and being a meaningful
rule, that are decidable (in the sense that we can decide them using
intelligent judgement) but are not necessarily recursive,

To the suspicion that this conception is incompatible with Church’s Thesis

Fletcher answers that one can still believe that
for every ‘abstract’ function on numbers there is a recursive function
extensionally equivalent to it;
where, of course, the term function is used in the intuitionist sense, ie.’
not as a mapping but as a procedure,
From this viewpoint a following question can be raised:
Compare the concept Cl that is expressed by the standard formulation
Aaben (n>2 D> —(a +b"=¢cY)
and the concept CZ underlying the recent proof of FLT. Finally, consider
the concept C3 that underlies the original formulation of FLT, viz.
Vaben (n>2 D — (a"+b" = "),
Once more, C3 is  in our terminology - synthetic: the concept "V at least
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presupposes a finished actually infinite set of quadruples. CZ2 constructs the
solution T without presupposing actual infinity. As for Cl. it is certainly
analytic (it effectively calculates the value of the respective recursive
function for any quadruple of natural numbers). C1 does not solve FLT, of
course, Qur question concerns C2 and C3 as confronted with the above
quotation from [Fletcher 1998]: Can the quoted view be interpreted as
follows?

C3 is the ‘abstract function on numbers’ whereas C2 is the recursive
function extensionally equivalent fo it.

The positive answer depends on whether the proof of FLT is or is not
intuitionistically sound. In connection therewith another interpretation is
possible: C2 could correspond to a decidable but not recursive property: the
proof is then admissible for an intuitionist but not for a finitist. Then the
above hypothesis makes us expect that there should be some C4, viz. a
genuinely recursive function extensionally equivalent to C2.

(Fletcher's objectives are, among other things, oriented to making the
characterizations of finitism and intuitionism more precise and “{o diminish
the apparent distance between intuitionism and finitism” (ibidem). )

7. Conclusion

seems that at least some mathematical discoveries consist in replacing
synthetic concepts (a priori) with analytic concepts extensionally equivalent
to them. Befter to say:development of solving mathematical problems can be
described in terms of conceptual systems as follows: A mathematical
problem is formulated, ie. a concept representing this problem is expressed:
if the concept is analytic the problem is solved: otherwise, the problem is
equivalently reformulated in terms of some other concepts belonging to the
given conceptual system: if the resulting concept is analytic, the problem is
solved: otherwise, some other conceptual system is discovered and used, till
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the resulting concept is analytic. Indeed, if the problem consists in
calculating a function that is not recursive the problem cannot be solved,
and any concept that should identify this function is synthetic,
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