A Dispersive APML using Piecewise Linear Recursive Convolution for FDTD Method

FDTD법을 이용하여 분산매질을 고려하기 위한 PLRC-APML 기법

  • Lee Jung-Yub (School of Electrical Engineering, Seoul National University) ;
  • Lee Jeong-Hae (Department of Radio Science & Communication Engineering, Hongik University) ;
  • Kang No-Weon (Korea Research Institute of Standards and Science) ;
  • Jung Hyun-Kyo (School of Electrical Engineering, Seoul National University)
  • Published : 2004.10.01

Abstract

In this paper, a dispersive anisotropic perfectly matched layer(APML) is proposed using piecewise linear recursive convolution(PLRC) for finite difference time domain(FDTD) methods. This proposed APML can be utilized for the analysis of a nonlinear dispersive medium as absorbing boundary condition(ABC). The formulation is simple modification to the original AMPL and can be easily implemented. Also it has some advantages of the PLRC approach-fast speed, low memory cost, and easy formulation of multiple pole susceptibility. We applied this APML to 2-D propagation problems in dispersive media such as Debye and Lorentz media The results showed good absorption at boundaries.

본 논문에서는 유한 시간 차분법(FDTD) 내에서 PLRC(Piecewise Linear Recursive Convolution)법을 이용한 분산성 물질에 대한 비등방성 흡수체(APML)를 제안한다. 제안된 흡수체는 비선형, 분산성 매질 해석시 무한 경계조건을 표현하기 위해 사용될 수 있다. 제안된 흡수체는 기존의 APML 정식화 과정에서 분산 특성을 고려한 것이며 PLRC법의 장점인 빠른 계산시간, 저 메모리 사용, 다극 감수율의 간편한 정식화 등의 장점을 가지고 있다. 개발된 분산성 APML은 드바이(Debye)매질과 로렌츠(Lorentz) 매질 등의 분산성 물질의 해석에 적용하였으며 수치실험을 통해 흡수경계에서 뛰어난 흡수율을 가짐을 보였다.

Keywords

References

  1. K. S. Vee, 'Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media', IEEE Trans. Antennas Propagat, vol. AP-14, pp. 302-307, May 1966
  2. A. Taflove, S. C. Hagness, Computational Electro-dynamics: The Finite Difference Time Domain Method, 2nd ed. Norwood, MA: Arthch House, 2000
  3. J. P. Berenger, 'A perfectly matched layer for the absorption of electromagnetic waves', J Computat. Phys., vol. 114, pp. 185-200, Oct. 1994 https://doi.org/10.1006/jcph.1994.1159
  4. S. D. Gedney, 'An anisotorpic perfectly matched layer absorbing media for the truncation of FDTD lattices', IEEE Trans. Antennas Propagat., vol. 44, pp. 1630-169, Dec. 1996 https://doi.org/10.1109/8.546249
  5. R. J. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler and M. Schneider, 'A frequency-dependent finite-difference time-domain formulation for dispersive materials', IEEE Trans. Electromagn. Compat, vol. 32, pp. 222-227, Aug. 1990 https://doi.org/10.1109/15.57116
  6. D. F. Kelly, R 1. Luebbers, 'Piecewise linear recursive convolution for dispersive media using FDTD', IEEE Trans. Antenna and Propagat, vol. 44, pp. 792-797, Jun. 1996 https://doi.org/10.1109/8.509882
  7. J. A. Roden, S. D. Gedney, 'Convolution PML(CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media', Microwave Opt. Technol. Lett., vol. 27, pp. 334-339, Dec. 2000 https://doi.org/10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
  8. F. L. Teixeira, W. C. Chew, M. Straka, M. L. Oristaglio and T. Wang, 'Finite-difference timedomain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils', IEEE Trans. Geosci. Remote Sensing, vol. 36, no. 6, pp. 1928-1937, Nov. 1998 https://doi.org/10.1109/36.729364
  9. M Fujii, P. Russer, 'A nonlinear and dispersive APML ABC for the FD-TD Methods', IEEE Microwave and Wireless Compo Lett, vol. 12, no. 11, pp. 444-446, Nov. 2002 https://doi.org/10.1109/LMWC.2002.805539