DOI QR코드

DOI QR Code

PERIOD CHANCE OF THE CONTACT BINARY AH Tauri

접촉쌍성 AH Tauri의 공전주기 변화

  • Lee, Dong-Joo (Korea Astronomy Observatory, Dept. of Astronomy & Space Science, College of Natural Science and Institute for Basic Science Research, Chungbuk National University) ;
  • Lee, Chung-Uk (Korea Astronomy Observatory, Dept. of Astronomy & Space Science, College of Natural Science and Institute for Basic Science Research, Chungbuk National University) ;
  • Lee, Jae-Woo (Korea Astronomy Observatory, Dept. of Astronomy & Space Science, College of Natural Science and Institute for Basic Science Research, Chungbuk National University) ;
  • Kim, Seung-Lee (Korea Astronomy Observatory) ;
  • Oh, Kyu-Dong (Department of Earth Science Education, Chonnam National University) ;
  • Kim, Chun-Hwey (Dept. of Astronomy & Space Science, College of Natural Science and Institute for Basic Science Research, Chungbuk National University)
  • 이동주 (한국천문연구원, 충북대학교 천문우주학과) ;
  • 이충욱 (한국천문연구원, 충북대학교 천문우주학과) ;
  • 이재우 (한국천문연구원, 충북대학교 천문우주학과) ;
  • 김승리 (한국천문연구원) ;
  • 오규동 (전남대학교 지구과학교육과) ;
  • 김천휘 (충북대학교 천문우주학과)
  • Published : 2004.12.01

Abstract

New BV RI photometric observations of the contact binary AH Tau were performed with the 61 cm reflector and a 2K CCD camera at the Sobaeksan Optical Astronomy Observatory during seven nights from September to December, 2001. A total of 144 times of minima observed up to date, including three times of minima obtained from our observation, were analyzed. It is found that the orbital period of AH Tau has varied in a cyclic way superposed on a secular period decrease. The rate of the secular period decrease is calculated to be $1^s$ .04 per century, implying that a mass of about $3.8{\times}10^{-8}M{\odot}/yr$ from the more massive primary flows into the secondary if a conservative mass transfer is assumed. Assuming that the sinusoidal period variation is produced by a light-time effect due to an unseen third body, the resultant semi-amplitude, period, and eccentricity for the deduced light-time orbit are obtained as 35.4 years, 0.014 day and 0.52, respectively. The mass of the third-body is calculated as a tout $0.24M{\odot}$ when the third body is assumed to be coplanar with AH Tau system.

2001년 9월부터 12월까지 충 7일간 소백산천문대의 61cm 망원경과 21K CCD 카메라로 접촉쌍성 AH Tau의 BVRI 측광 관측을 수행하였다. 관측으로부터 얻은 3개의 극심시각을 포함하여 지금까지 수집된 144개의 모든 극심시각을 분석한 결과, AH Tau의 공전주기는 영년 주기 감소와 규칙적인 주기 변화가 중첩되어 변화함을 발견하였다. 궤도공전주기의 영년 감소율은 100년에 1.04초로 계산되었다. 보존적인 질량 이동 이론에 의하면, 이는 질량이 큰 주성에서 질량이 작은 반성으로 매년 $3.77{\times}10^{-8}M{\odot}$의 질량이 이동됨을 의미한다. 규칙적인 주기 변화가 제3천체에 의한 광시간 효과에 의하여 생성된 것으로 가정하여 얻은 광시간 궤도의 반진폭은 0.014일이고, 그 주기는 약 35.4년이며 이심률은 0.52이다. 제3천체가 AH Tau계와 동일 평면상에 있다고 가정할 경우, 제3천체의 질량은 약 $0.24M{\odot}$으로 계산되었다.

Keywords

References

  1. Applegate, J. H. 1992, ApJ, 385, 621 https://doi.org/10.1086/170967
  2. Bakis, V., T\ddot uys\ddot uz, M., Zejda, M., Soydugan, F., Soydugan, E., Kabas, A., Dogru, S. S., Erdem, A., Budding, E., Demircan, O., Ozdemir, S., Cicek, C., & Bulut, A. 2003, IBVS, 5399
  3. Binnendijk, L. 1950, BAN, 11, 209
  4. Byboth, K. N., Markworth, N. L., & Bruton, W. B. 2004, IBVS, 5554
  5. Csizmadia, S., Zhou, A. Y., K\ddot onyves, V., Varga, Z., & Sandor, Zs. 2002, IBVS, 5230
  6. Demircan, O., Derman, E., Akahn, A., Selam, S., & M\ddot uyesserogu, Z. 1994, MNRAS, 267, 19 https://doi.org/10.1093/mnras/267.1.19
  7. Guinan, E. F., & Bradstreet, D. H. 1988, in Formation and Evolution of Low Mass Stars, eds. A. K Dupree & M. T. V. T. Lago (Kluwer: Dordrecht), p.345
  8. Hilditch, R. W. 2001, An Introduction to Close Binary Stars (Cambridge: Cambridge Univ. Press), Chap.4
  9. Irwin, J. B. 1952, ApJ, 116, 211 https://doi.org/10.1086/145604
  10. Irwin, J. B. 1959, AJ, 64, 149 https://doi.org/10.1086/107913
  11. Kang, Y. W., Lee, H.-W., Hong, K. S., Kim, C.-H., & Guinan, E. F. 2004, AJ, 128, 846 https://doi.org/10.1086/422706
  12. Kim, C.-H., Jeong, J. H., Demircan, O., Miiyesseroglu, Z., & Budding, E. 1997, AJ, 114, 2753 https://doi.org/10.1086/118684
  13. Kim, C.-H., Lee, J. W., Kim, H.-I., Kyung, J.-M., & Koch, R. H. 2003, AJ, 126, 1555 https://doi.org/10.1086/377321
  14. Kraft, R. P., & Landolt, A. 1959, ApJ, 129, 287 https://doi.org/10.1086/146619
  15. Kreiner, J. M., Kim, C.-H., & Nha, I.-S. 2001, An Atlas of O-C Diagrams of Eclipsing Binary Stars, Part 6 (Krakow: Press of Pedagogical Univ.), pp.2085-2086
  16. Kwee, K. K., & Van Woerden, H. 1956, Bull., Astron., Insts., Neth., 12, 327
  17. Lee, J. W., Kim, C.-H., Han, W., Kim, H.-I., & Koch, R. H. 2004, MNRAS, 352, 1041 https://doi.org/10.1111/j.1365-2966.2004.07996.x
  18. Leung, K-C., Zhai, D., Liu, Q., & Yang, Y. 1985, AJ, 90, 115 https://doi.org/10.1086/113717
  19. Liu, Q. Y., Yang, Y. L., Zhang, Y. L., & Wang, B. 1991, AcApS, 11, 143
  20. Magalashvili, : N. L., & Kumsishvili, J. I. 1980, Abastumani Astrof. Observ., 53, 28
  21. Nelson, R. H. 2001, IBVS, 5040
  22. Press, W., Flannery, B. P., Teukolsky, S. A., & Verrerling, W. T. 1992, Numerical Recipes (Cambridge: Cambridge Univ. Press), Chap.15
  23. Pribulla, T., Yanko, M., Parimucha, S., & Chochol, D. 2001, IBVS, 5056
  24. Romano, G. 1962, Publ. Osserv. Padova, 123, 9
  25. Shapley, H., & Hughes, E. 1934, Harvard Ann., 90, 168
  26. van't Veer, F., & Maceroni, C. 1992, in Binaries as Tracers of Stellar Formation, eds. A. Duquennoy & M. Mayor (Cambridge: Cambridge University Press), p.237
  27. Yang, Y. L., & Liu, Q. Y. 2002, A&A, 390, 555 https://doi.org/10.1051/0004-6361:20020753