Abstract
In order to analyze the hydrogen distribution during a severe accident in the APR1400 containment, GASFLOW II was used. For the APR1400 NPP, a hydrogen mitigation system is considered from the design stage, but a fully time-dependent, three-dimensional analysis has not been performed yet. In this study GASFLOW code II is used for the three-dimensional analysis. The first step to analysis involving hydrogen behavior in a full containment with the GASLOW code is to generate a realistic geometry model, which includes nodalization and modeling of the internal structures such as walls, ceilings and equipment. Geometry modeling of the APR1400 is conducted using GUI program by overlapping the containment cut drawings in a graphical file format on the mesh view. The total number of mesh cells generated is 49,476. And the calculated free volume of the APR1400 containment by GASFLOW is almost the same as the value from the GOTHIC modeling. A hypothetical SB-LOCA scenario beyond design base accident was selected to analyze the hydrogen behavior with the hydrogen mitigation system. The source of hydrogen and steam for the GASFLOW II analysis is obtained from a MAAP calculation. Combustion pressure and temperature load possibilities within the compartments used in the GOTHIC analysis are studied based on the Sigma-Lambda criteria. Finally the effectiveness of HMS installed in the APR1400 containment is evaluated from the point of severe accident management