DOI QR코드

DOI QR Code

Effect of Phenanthrene on Gill Biotransformation in Olive Flounder (Paralichthys olivaceus)

  • Jee Jung-Hoon (Institute of Fisheries Sciences, Pukyong National University) ;
  • Kang Ju-Chan (Department of Aquatic Life Medicine, Pukyong National University)
  • Published : 2004.03.01

Abstract

The potential of phenanthrene to induce xenobiotic responses was investigated. Olive flounder (Paralichthys olivaceus) was exposed to different levels of phenanthrene $(0.5,\;1\;and\;{\mu}M)$ for 4 weeks, Gill CYP450 content and EROD (ethoxyresorufin O-deethylation) activity were found to be significant in the flounders treated with the higher concentration of phenanthrene $(>1.0\;{\mu}M)$, however, there were no significant changes in gill PROD (penthoxyresorufin O-deethylation) activity in all treated group compared to the controls. This study demonstrated that phenanthrene has potential to induce gill cytochrome P450 and EROD enzyme in olive flounder.

Keywords

References

  1. Addison, R.F., D.E. Willis and M.E. Zinck. 1994. Liver microsomal monooxygenase induction in winter flounder (Pseudopleuronectes arnericanus) from a gradient of sediment PAH concentrations at Sydney Harbour, Nova Scotia. Mar. Environ. Res., 37, 283-296 https://doi.org/10.1016/0141-1136(94)90055-8
  2. APHA (American Public Health Association). 1995. Standard Methods for the Examination of Water and Waste Water. 19th ed. APHA, Washington, D.C., pp. 1200
  3. Andelman, J.B. and J.E. Snodgrass. 1974. Incidence and significance of polynuclear aromatic hydrocarbons in the water environment. Crit. Rev. Environ. Control., 4, 69-83 https://doi.org/10.1080/10643387409381611
  4. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Brown, J.F. 1992. Metabolic alteration of PCB residues in aquatic fauna: distributions of cytochrome P4501AI and P4502B like activities. Mar. Environ. Res., 34, 261-266 https://doi.org/10.1016/0141-1136(92)90118-6
  6. Correa, M. and H.I. Garcia. 1990. Physiological responses of juvenile white mullet, Mugil curerna, exposed to benzene. Bull. Environ. Contam. Toxicol., 44, 428-434 https://doi.org/10.1007/BF01701225
  7. Duncan, D.E. 1955. Multiple range and multiple F tests. Biometrics, 11, 1-42 https://doi.org/10.2307/3001478
  8. Engelhardt, F.R., M.P. Wong and M.E. Duey. 1981. Hydromineral balance and gill morphology in rainbow trout Salrna gairdneri, acclimated to fresh and sea water, as affected by petroleum exposure. Aquat. Toxicol., 1, 175-186 https://doi.org/10.1016/0166-445X(81)90013-8
  9. Gerlach, S.A. 1981. Marine Pollution: Diagnosis and Therapy. Springer Verlag. Berlin, pp. 218
  10. Goks$\phi$yr, A. and L. $F\ddot{o}rlin$. 1992. The cytochrome P450 system in fish aquatic toxicology and environmental monitoring. Aquat. Toxicol., 22, 287-312 https://doi.org/10.1016/0166-445X(92)90046-P
  11. Haasch, M.L., P.J. Wejksnora, J.J. Stegeman and J.J. Lech. 1989. Cloned rainbow trout liver P450 complementary DNA as a potential environmental monitor. Toxicol. Appl. Pharmacol., 98, 362-368 https://doi.org/10.1016/0041-008X(89)90240-8
  12. Johnson, L.L., T.K. Collier and J.E. Stein. 2002. An analysis in support of sediment quality thresholds for polycyclic aromatic hydrocarbons (PAHs) to protect estuarine fish. Aquat. Conserv., 12, 517-538 https://doi.org/10.1002/aqc.522
  13. Kennedy, S.W. and S.P. Jones. 1994. Simultaneous measurement of cytochrome P4501A catalytic activity and total protein concentration with a fluorescence plate reader. Anal. Biochem., 222, 217-223 https://doi.org/10.1006/abio.1994.1476
  14. Kennicutt, M.C. II and J.M. Brooks. 1988. Relation between shallow sediment bitumens and deeper reservoired hydrocarbons, offshore Santa Maria Basin, California, U.S.A. Appl. Geochem., 3, 573-582 https://doi.org/10.1016/0883-2927(88)90089-3
  15. Law, R.J., V.J. Dawes, R.J. Woodhead and P. Matthiessen. 1997. Polycyclic aromatic hydrocarbons (PAH) in seawater around England and Wales. Mar. Pollut. Bull., 34, 306-322 https://doi.org/10.1016/S0025-326X(96)00096-3
  16. Lehr, R.E. and D.M. Jerina. 1977. Metabolic activation of polycyclic hydrocarbons. Arch. Toxicol., 39, 1-6 https://doi.org/10.1007/BF00343269
  17. McElroy, A.E., J.W. Farrington and J.M. Teal. 1989. Bio availability of polycyclic aromatic hydrocarbons in the aquatic environment. In: Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. Varamcsi, U., ed. CRC Press, Boca Raton, FL., pp. 1-40
  18. Meador J.P., J.E. Stein, W.L. Reichert and U. Varanasi. 1995. A review of bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev. Environ. Contam. Toxicol., 143, 79-165
  19. Miller, M. R., D.E. Hinton and J.J. Stegeman. 1989. Cytochome P 450E induction and localization in gill pillar endothelial cells of scup and rainbow trout. Aquat. Toxicol., 14, 307-322 https://doi.org/10.1016/0166-445X(89)90029-5
  20. NeV, J.M. 1990. Composition and fate of petroleum and spill treating agents in the marine environment. In: Sea Mammals and Oil: Confronting Risks? Geraci, J.R. and D.J. St Aubin. eds. Academic Press, London, pp. 1-32
  21. Ogata, M. and Y. Miyake. 1979. Disappearance of aromatic hydrocarbons and organic sulphur compounds from fish relred in crude oil suspensions. Water Res., 13, 75-78 https://doi.org/10.1016/0043-1354(79)90257-4
  22. Omura, T. ,end R. Sato. 1964. The carbon monoxide binding pigment of liver microsomes. II. Solubilization, purification and properties. J. Biol. Chem., 239, 2379-2385
  23. Poirier, A.. B. Baudin Laurencin, G. Bodennec and C. Quentel. 1986. Experimental poisoning of the rainbow trout, (Salmo gairdneri) Richardson, by engine dieseloil: Mortalities, haematological changes, histology. Aquaculture, 55, 115-137 https://doi.org/10.1016/0044-8486(86)90067-0
  24. Prasad, M. S. 1991. SEM study on the effects of crude oil on the gills and airbreathing organs of climbing perch Anabas testudineus. Bull. Environ. Contam. Toxicol., 47, 882-889 https://doi.org/10.1007/BF01689519
  25. Skaare, J.U., E.G. Jensen, A. Goksoeyr and E. Egaas. 1991. Response of xenobiotic metabolizing enzymes of rainbow trout (Oncorhynchus mykiss) to the monoortho substituted polychlorinated PCB congener 2,3',4,.4',5 pentachlorobiphenyl, PCB-118, detected by emzyme activities and immunochemical methods. Arch. Environ. Contam. Toxicol., 20, 349-352 https://doi.org/10.1007/BF01064401
  26. Stegeman, J.J., B.R. Woodlin and R.M. Smolowitz. 1990. Structl re, function and regulation of cytochrome P450 forms in fish. Biochem. Soc. Trans., 18, 19-2 I https://doi.org/10.1042/bst0180019
  27. Stegeman, J.J., R.M. Smolowitz and M.E. Hahn. 1991. Immunohistochemical localization of environmentally induced cytochrome P450IA I in multiple organs of the marine teleost Stenotomus chrysops (Scup). Toxicol. Appl. Pharmacol., 110, 486-504 https://doi.org/10.1016/0041-008X(91)90049-K
  28. Stephens, S.M., S.C. Frankling, R.M. Stagg and J.A. Brown. 2000. Sub lethal effects of exposure of juvenile turbot to oil produced water. Mar. Pollut. Bull., 40, 928-937 https://doi.org/10.1016/S0025-326X(00)00031-X
  29. Stickle, W.B., T.D. Sabourin and S.D. Rice. 1982. Sensitivity and osmoregulation of coho salmon Oncorhynchus kisutch exposed to toluene and naphthalene at different salinities. In: Physiological Mechanisms of Marine Pollutant Toxicity. Vemberg, W.B., A. Calabrese, F.P. Thurberg and F.J. Vemberg eds. Academic Press, New York, pp. 331-348
  30. U.S. EPA (U.S. Environmental Protection Agency). 1987. Health and Environmental Effects Profile for Phenanthrene. Prepared by the Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, OH, for the Office of Solid Waste and Emergency Response. ECAO-CIN-P226
  31. Van Veld, P.A. D.J. Westbrook, B.R. Woodin, R.C. Hale, C.L. Smith, R.J. Hugget and J.J. Stegeman. 1990. Induced cytochrome P450 in intestine and liver of spot (Leiostomus xanthurus) from a polycyclic aromatic hydrocarbon contaminated environment. Aquat. Toxicol., 17, 119-132 https://doi.org/10.1016/0166-445X(90)90026-L
  32. Varanasi, U., J.E. Stein and M. Nishimoto. 1989. Biotransformation and disposition of PAH in fish. In: Metabolism of Polycylic Aromatic Hydrocarbons in the Aquatic Environment. Varanasi, U. ed. CRC Press, Boca Raton, FL, pp. 93-149
  33. Varanasi, U., J.E. Stein, W.L. Reichert, K.L. Tilbury, M.M. Krahn and S.L. Chan. 1992. Chlorinated and aromatic hydrocarbons in bottom sediments, fish and marine mammals in US coastal waters: laboratory and field studies of metabolism and accumulation. In: Persistent Pollutants in Marine Ecosystems. Walker, C.H. and D.R. Livingstone eds. Permagon Press, New York, pp. 83-115
  34. Wade, T.L., E.L. Atlas, J.M. Brooks, M.C. Kinnicutt, R.G. Fox, J. Sericano, B. Garcia Romero and D. DeFreitas. 1988. NOAA Gulf of Mexico status and trends program. Trace organic contaminant distrubution in sediments and oyster. Estuaries, 11, 171-179 https://doi.org/10.2307/1351969

Cited by

  1. Effect of phenanthrene on haematological parameters in olive flounder, Paralichthys olivaceus (Temminch et Schlegel) vol.35, pp.14, 2004, https://doi.org/10.1111/j.1365-2109.2004.01152.x