Time Resolved Infrared Spectroscopy of Electro-optic Switching of 5CB

  • 발행 : 2004.03.24

초록

Time resolved infrared IR absorption spectroscopy is carried out to investigate the dynamics of electric field induced reorientation of the biphenyl molecular core and alkyl tail sub-fragments of the nematic liquid crystal 5CB (4-pentyl-4-cyano-biphenyl). The planar to homeotropic transition for high pre-tilt planar aligned cells, is studied for switching times ranging from 200 ${\mu}sec$ down to 80 ${\mu}sec$, the latter a factor of 1000 times faster than any previous nematic IR study. The reorientation rates of the core and tail are found to be the same to within experimental error and scale inversely with applied field squared, as expected for the balance of field and viscous torques. Thus any molecular conformation change during switching must relax on a shorter time scale. A simple model shows that no substantial differences exist between the reorientational dynamics of the tails and cores on the time scales longer than on the order of 10 ${\mu}s$.

키워드

참고문헌

  1. A. Kocot, J. K. Vij, and T. S. Perova, Adv. Chem. Phys. 113, 203 (2000) https://doi.org/10.1002/9780470141724.ch6
  2. T. Nakano, T. Yokoyama, and H. Toriumi, Appl. Spectrosc. 47, 1354 (1993) https://doi.org/10.1366/0003702934067702
  3. S. V. Shilov, S. Okretic, and H. W. Siesler, Vib. Spectrosc. 9, 57 (1995) https://doi.org/10.1016/0924-2031(94)00043-G
  4. N. Katayama, M. A. Czarnecki, M. Satoh, T. Watanabe, and Y. Ozaki, Appl. Spectrosc. 51, 4 (1997)
  5. S. V. Shilov, H. Skupin, F. Kremer, E. Gebhard, and R. Zentel, Liq. Cryst. 22, 203 (2000) https://doi.org/10.1080/026782997209577
  6. S. V. Shilov, H. Skupin, F. Kremer, T. Wittig, and R. Zentel, Phys. Rev. Lett. 79,1686 (1997) https://doi.org/10.1103/PhysRevLett.79.1686
  7. T. Urano and H. Hamaguchi, Chem. Phys. Lett. 195, 287 (1992) https://doi.org/10.1016/0009-2614(92)85604-9
  8. K. M. Booth, J. Nash, and H. J. Coles, Meas. Sci. Tech. 3, 843 (1992) https://doi.org/10.1088/0957-0233/3/9/008
  9. M. A. Czarnecki, N. Katayama, Y. Ozaki, M. Satoh, K. Yoshino, T. Watanabe, and T. Yanagi, Appl. Spectrosc. 47, 1383 (1993)
  10. H. Toriumi, H. Sugisawa, and H. Watanabe, Jpn. J. Appl. Phys. 27, L935 (1988) https://doi.org/10.1143/JJAP.27.L935
  11. W. Uhmann, A. Becker, C. Taran, and F. Siebert, Appl. Spectrosc. 45, 390 (1991) https://doi.org/10.1366/0003702914337128
  12. R. A. Palmer, Spectroscopy (Amsterdam) 8, 26 (1993)
  13. V. G. Gregoriou, J. L. Chao, H. Toriumi, and R. A. Palmer, Chern. Phys. Lett. 179,491 (1991) https://doi.org/10.1016/0009-2614(91)87092-P
  14. K. Huang and G. G. Fuller, Liq. Cryst. 25, 745 (1998) https://doi.org/10.1080/026782998205769
  15. DEI HV 1000, Directed Energy, Inc. Fort Collins, CO, USA.
  16. Nissan Chemical Co. RN768 polyimide
  17. This excludes the penetration layers at the surface of thickness ${\xi}=\;{\nu}K/{\Delta}{\varepsilon}\;E^2$ which at the fields employed here are of negligible thickness
  18. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2 nd ed. (Oxford University Press, Oxford, 1991)
  19. H. Takanashi, J. E. Maclennan, and N. A. Clark, Jpn. J. Appl. Phys. 37, 2587(1998) https://doi.org/10.1143/JJAP.37.2587
  20. H. Sugisawa, H. Toriumi, and H. Watanabe, Mol. Cryst. Liq. Cryst. Sci. Tech. Sect. A 214, 11 (1992)
  21. J. de Bleijser, L. H. Leyte-Zuiderweg, J. C. Leyte, P. C. M. van Woerkom, and S, J, Picken, Appl. Spectrosc. 50, 167 (1996) https://doi.org/10.1366/0003702963906573
  22. T. Urano and H. Hamaguchi, Appl. Spectrosc. 47, 2108 (1993) https://doi.org/10.1366/0003702934066488
  23. Liq. Cryst. 26, 1 (1999) https://doi.org/10.1080/026782999205461