Gly-His-Lys 펩타이드가 결합된 키토산과 그의 세포증식 효과에 관한 연구

Gly-His-Lys Conjugated Chitosan and its Cell Proliferation Effects

  • 하병조 (서울보건대학 뷰티아트과) ;
  • 이윤식 (서울대학교 응용화학부) ;
  • 박수남 (서울산업대학교 정밀화학과)
  • Ha Byung-Jo (Department of Beauty Arts, Seoul Health College) ;
  • Lee Yoon-Sik (School of Chemical Engineering, College of Engineering, Seoul National University) ;
  • Park Soo Nam (Department of Fine Chemistry, Seoul National University of Technology)
  • 발행 : 2004.11.01

초록

새로운 Gly-His-Lys (약자로 GHK)가 결합된 키토산을 $N^{\alpha}-Fmoc$ 아미노산과 BOP 커플링 시약을 사용한 고상법에 의해 제조하였다. 이를 위해 키토산 마이크로 비드를 W/O 에멀젼 상분리법으로 평균 입자크기 70 마이크로미터로 얻었다. GHK 펩타이드는 순차적으로 고상법에 의해 키토산 마이크로비드 위에 커플링 하였다. 아미노산 분석을 실시한 결과 Gly, His, kys의 비율이 1.02:1.13:0.96의 비율로 나타나 이론치와 거의 일치함을 확인할 수 있었다. GHK 펩타이드가 결합된 마이크로비드의 세포증식 효과는 MTT 분석으로 측정하였다. 측정결과 GHK 펩타이드가 결합된 키토산 마이크로비드는 대조군인 펩타이드가 결합되지 않은 키토산 마이크로비드 자체에 비해 높은 세포증식 효과를 보였다.

Novel GHK-conjugated chitosan was prepared by the solid-phase method using $N^{\alpha}-Fmoc$ amino acids/BOP coupling reagent. For this purpose, the chitosan microbeads which had a mean diameter of 70 um were prepared by the W/O emulsion-phase separation method. The GHK was successfully coupled to the chitosan microbeads by stepwise solid-phase method. The result of amino aid analysis was in good agreement with the theoretical values; $Gly_{1.02}\;of\;His_{1.13}\;Lys_{0.96).$. The cell proliferation effect of the GHK-bound chitosan microbeads was measured by MTT assay. We concluded that GHK-bound chitosan microbeads gave higher cell Proliferation effect than chitosan microbeads.

키워드

참고문헌

  1. S-B. Gudmumd, A. Thorleif, and S. Paul, Chitin and Chitosan, Elsevier Science Publishers, New Yark (1989)
  2. G. G. Allan, J. R. Fox, and N. Kong, A critical evaluation of the potenyial sources of chitin and chitosan, in Proc. 1st Intl. Conf. Chitin/Chitosan, MIT Sea Grant Program, Massachusetts, 64 (1978)
  3. S. Hirano, S. Kondo, and Y. Ohe, Chitosan gel; A novel polysaccharide gel, Polymer, 16, 622 (1975)
  4. J. M. Ranall, V. G. Ranndall, G. M. McDonald, R. N. Young, and M. S. Masri, Removal of trace quantities of nickel form solution, J. Appl. Polym Sci., 23, 727 (1979)
  5. R. Yamaguchi, R. Arai, T. Kaneko, and T. Otoh, Utilization of partially N-succinylated derivatives of chitosan and glycolchitosan as supports for the immobilization of enzymes, Biotechnol. Bioeng., 24, 1081 (1982)
  6. Y. S. Lee, The preparation chitosan microbeads, microspheres, and microcapsules and their biomedical applications, 36th IUPAC Microsymposium on High-Swelling Gels, Prague, 10-14 July (1995)
  7. L. Pickart, J. H. Freeman, W. J. Loker, J. Peisach, C. M. Perkins, R. E. Stenkamp, and B. Weinstein, Growth-modulating plasma tripeptide may function by facilitating copper uptake into cells, Nature., 288, 715 (1980)
  8. D. P. Micael and E. Ruoslahti, Cell attachment activity of fibronectin can be duplicate by small synthetic fragments of the molecule, Nature, 309, 30 (1984)
  9. A. Hauntanent, J. Gailit, D. M. Mann, and E. Ruoslahti, Effect of modification of the RGD sequence and its context on recognition by the fibronnectin receptor, J. Biol. Chem., 264(3), 1437 (1989)
  10. B. J. Ha, O. S. Lee, and Y. S. Lee, A new synthetic method of peptide-chitosan conjugates, Journal of Ind. & Eng. Chemistry, 1, 57 (1995)
  11. F. A. Rutherford III and P. R. Austin, Proc. Int. Conf. Chitin/Chitosan, 1st, 182 (1978)
  12. F. Nanja, R. Katsum, and K. Sakai, Enzymatic method for the determination of degree of deacetylation of chitosan, Anal. Biochem., 193, 164 (1991)
  13. W. A. Bough, W. L. Salter, A. C. M. Wu, and B. E. Perkins, Influence of manufacturing variables on the characteristics and effectiveness of chitosan products; chemical composition, viscosity, and molecular weight distribution of chitosan, Biotech Bioeng., 20, 1931 (1978)
  14. D. D. Perrin, W. L. F. Armarego, and D. R. Perrin, Purification of Laboratory Chemicals, 2nd Ed., Pergamon Press, Oxford (1980)
  15. M. Shinonaga, Y. Kawamura, and T. Yamane, Immobilization of yeast cells with cross-linked chitosan beads, J. Fermentation and Bioengineering, 72, 168 (1991)
  16. E. Atherton and R. C. Sheppard, Solid phase peptide synthesis; A practical approach, IRL Press (1989)
  17. D. Le Nguyen and B. Castro, Peptide chemistry, T. Shiba and S. Sakakibara (eds.), Protein Research Foundation, 231, Osaka (1987)
  18. E. T. Kaiser, R. L. Colescott, and P. I. Cook, Ninhydrin color test, Analyt. Biochem, 34, 595 (1970)
  19. G. A. Grant, Synthetic peptides: A user's guide, W. H. Freeman and Company, 119, New York (1992)
  20. J. M. Stewart and J. D. Young, Solid phase peptide synthesis, Pierce Chemical Company, Rockford IL, 125 (1984)
  21. M. Ponec, M. Haverkort, Y. L. Soei, and J. Kempenaar, Use of human keratinocyte and fibroblast cultures for toxicity studies of topically applied compounds, J. Phram Sci., 79(4), 312 (1990)
  22. 하병조, 키토산의 화학적 변형 및 응용에 관한 연구, 공학박사학위논문, 162, 서울대학교 (1996)
  23. J. S. Adamson, M. A. H. Groenevelt, and G. A. Lajoie, Simple and convenient synthesis of tertbutyl esters of Fmoc-serin, Fmoc-threonin, and Fmoc-tyrosine, J. Org. Chem., 56, 3447 (1991)
  24. E. Gross and J. Meienhofer, The Peptides, Analysis, Synthesis, Biology, Vol 2, Academic Press, New York (1979)