변형성장인자가 고정된 키토산 필름의 골아세포 활성에 미치는 영향

Transforming growth factor $(TGF)-{\beta}1$ conjugated chitosan film for enhanced osteoblastic activity

  • 박윤정 (서울대학교 치과대학 두개악안면 재건과학, 서울대학교 지능형 생체계면공학 연구센터) ;
  • 이주연 (서울대학교 치과대학 두개악안면 재건과학, 서울대학교 지능형 생체계면공학 연구센터) ;
  • 김경화 (서울대학교 치과대학 치주과학 교실, 서울대학교 지능형 생체계면공학 연구센터) ;
  • 김태일 (서울대학교 치과대학 치주과학 교실) ;
  • 이명희 (이화여자대학교 약학대학 제약학과, 서울대학교 지능형 생체계면공학 연구센터) ;
  • 신승윤 (서울대학교 치과대학 치주과학 교실, 서울대학교 지능형 생체계면공학 연구센터) ;
  • 설양조 (서울대학교 치과대학 치주과학 교실, 서울대학교 지능형 생체계면공학 연구센터) ;
  • 이용무 (서울대학교 치과대학 치주과학 교실) ;
  • 류인철 (서울대학교 치과대학 치주과학 교실) ;
  • 구영 (서울대학교 치과대학 치주과학 교실, 서울대학교 지능형 생체계면공학 연구센터) ;
  • 한수부 (서울대학교 치과대학 치주과학 교실) ;
  • 민병무 (서울대학교 치과대학 두개악안면 재건과학, 이화여자대학교 약학대학 제약학과) ;
  • 이승진 (이화여자대학교 약학대학 제약학과, 서울대학교 지능형 생체계면공학 연구센터) ;
  • 정종평 (서울대학교 치과대학 치주과학 교실, 서울대학교 지능형 생체계면공학 연구센터)
  • Park, Yoon-Jeong (Department of Craniomaxillofacial Reconstructive Science, College of Dentistry, DRI, Seoul National University, Intellectual Biointerface Ecngineering Center (IBEC) at Seoul National University, Korea Science and Engineering Foundation (KOSEF)) ;
  • Lee, Jue-Yeon (Department of Craniomaxillofacial Reconstructive Science, College of Dentistry, DRI, Seoul National University, Intellectual Biointerface Ecngineering Center (IBEC) at Seoul National University, Korea Science and Engineering Foundation (KOSEF)) ;
  • Kim, Kyung-Hwa (Department of Periodontology, College of Dentistry, DRI, Seoul National University, Intellectual Biointerface Engineering Center (IBEC) at Seoul National University, Korea Science and Engineering Foundation (KOSEF)) ;
  • Kim, Tae-Il (Department of Periodontology, College of Dentistry, DRI, Seoul National University) ;
  • Lee, Myung-Hee (Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Intellectual Biointerface Engineering Center (IBEC) at Seoul National University, Korea Science and Engineering Foundation (KOSEF)) ;
  • Shin, Seung-Yoon (Department of Periodontology, College of Dentistry, DRI, Seoul National University, Intellectual Biointerface Engineering Center (IBEC) at Seoul National University, Korea Science and Engineering Foundation (KOSEF)) ;
  • Seol, Yang-Jo (Department of Periodontology, College of Dentistry, DRI, Seoul National University, Intellectual Biointerface Engineering Center (IBEC) at Seoul National University, Korea Science and Engineering Foundation (KOSEF)) ;
  • Lee, Yong-Moo (Department of Periodontology, College of Dentistry, DRI, Seoul National University) ;
  • Rhyu, In-Chul (Department of Periodontology, College of Dentistry, DRI, Seoul National University) ;
  • Ku, Young (Department of Periodontology, College of Dentistry, DRI, Seoul National University, Intellectual Biointerface Engineering Center (IBEC) at Seoul National University, Korea Science and Engineering Foundation (KOSEF)) ;
  • Han, Soo-Boo (Department of Periodontology, College of Dentistry, DRI, Seoul National University) ;
  • Min, Byung-Moo (Department of Craniomaxillofacial Reconstructive Science, College of Dentistry, DRI, Seoul National University, Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University) ;
  • Lee, Seung-Jin (Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Intellectual Biointerface Engineering Center (IBEC) at Seoul National University, Korea Science and Engineering Foundation (KOSEF)) ;
  • Chung, Chong-Pyoung (Department of Periodontology, College of Dentistry, DRI, Seoul National University, Intellectual Biointerface Engineering Center (IBEC) at Seoul National University, Korea Science and Engineering Foundation (KOSEF))
  • 발행 : 2004.12.31

초록

골아세포의 생물학적 기능을 증진시키기 위해 키토산의 표면개질에 대하여 연구하였다. 생체적합성 천연고분자인 키토산은 1차 아미노기를 소유하고 있으므로 적정한 공유결합제를 사용하여 세포성장인자와 같은 생리활성을 지닌 단백질을 키토산의 표면에 고정시킬 수 있다. 본 연구에서는 키토산을 필름형태로 제조하여 세포성장인자 중 형질전환성장인자를 고정하고 골아세포의 부착, 성장 및 분화를 증가시키고자 하였다. 형태전환성장인자의 고정화 효율은 단순한 흡착방법에 비해 높았으며, 표면에 형성된 공유결합은 매우 안정하였다. 골아세포를 배양하여 초기세포부착능에 대한 영향을 연구한 결과, 배양 후 4시간, 1일째, 형질전환성장인자를 고정한 키토산 표면에서 고정하지 않은 키토산의 표면에 비해 더 많은 수의 골아세포가 부착되었고, 더 많이 신장된 부착형태를 보였다. 세포활성정도와 배양 후 4주일째의 칼슘축적량을 측정한 결과, 형질전환성장인자를 고정한 키토산 표면에서 고정하지 않은 키토산의 표면에 비해 더 높았다. 위의 결과는 키토산 표면에 형태전환성장인자의 고정이 성공적으로 이루어졌으며, 또한 실제로 활성이 있는 것이 증명되었다. 위의 연구 결과에서 형질전환성장인자로 고정된 키토산은 골아세포의 초기 부착 및 분화를 촉진시켰음을 알 수 있었던 바 성장인자의 표면고정은 임플란트 및 조직공학용 지지체에도 적용하여 생체적합성과 세포기능을 증진시키는데 이용할 수 있음을 알 수 있었다.

키워드

참고문헌

  1. Holland J, Hersh L, Bryhan M, Onyiriuka E, Ziegler L. Culture of human vascular endothelial cells on an RGD-containing synthetic peptide attached to a starch-coated polystyrene surface: comparison with fibroneetin-coated tissue grade polystyrene. Biomaterials 1996; 17: 2147-2156 https://doi.org/10.1016/0142-9612(96)00028-2
  2. Grzesik JJ, Pierschbacher MD, Amodeo MF, Malaney TI, Glass JR. Enhancement of cell interactions with collagen/glycosaminoglycan matrices by RGD derivation. Biomaterials 1997; 18: 1625-1632 https://doi.org/10.1016/S0142-9612(97)00103-8
  3. Okamoto K, Matsuura T, Hokosawa R, Agokawa Y. RGD peptides regulate the specific adhesion scheme of osteoblasts to hydroxyapatite by not to titanium. J. Dent. Res. 1998;77: 481-487 https://doi.org/10.1177/00220345980770030701
  4. Mann BK, Tsai AT, Scott-Burden T, West JL. Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition. Biomaterials 1999;20: 2281-2286 https://doi.org/10.1016/S0142-9612(99)00158-1
  5. Ferris DM, Moodie GD, Dimond PM, Gioranni CWD, Ehrlich MG, Valentini RF RGD-coated titanium implants stimulate increases bone formation in vivo. Biomaterials 1999;20: 2323-2331
  6. Ito Y, Chen G, Imanishi Y. Micropatterned immobilization of epidermal growth factor to regulate cell function. Bioconjug. Chem. 1998; 9: 277-282 https://doi.org/10.1021/bc970190b
  7. Kuhl PR, Griffith-Cima LG.. Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nat. Med. 1996;2: 1202-1207
  8. Liu SQ, Ito Y, Imanishi Y. Cell growth on immobilized cell growth factor. I. Acceleration of the growth of fibroblast cells on insulin-immobilized polymer matrix in culture medium without serum. Biomaterials 1992; 13: 50-58
  9. Puleo DA, Kissling RA, Sheu MS. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials 2002 ; 23: 2079-2087 https://doi.org/10.1016/S0142-9612(01)00339-8
  10. Noda M, Camilliere JJ, In vivo stimulation of bone formation by transforming growth factor $\beta$. Endocrinology 1989; 124: 2991-2994
  11. Park YJ, Lee YM, Park SN, Sheen SY, Chung CP, Lee SJ. Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials 2000; 21: 153-159 https://doi.org/10.1016/S0142-9612(99)00143-X
  12. Nimni ME. Polypeptide growth factors: targeted delivery systems. Biomaterials 1997 ; 28: 5-24 https://doi.org/10.1016/S0142-9612(97)00050-1
  13. Suh JKF, Mattew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 2000; 21: 2589-2598 https://doi.org/10.1016/S0142-9612(00)00126-5
  14. Shahabeddin L, Berthod F, Damour O, Collombel C. Characterization of skin reconstructed on chitosan cross-linked collagen-glycosaminoglycan matrix. Skin. Pharmacol, 1990 ; 3: 107-114
  15. Hock JM, Canalis E, Centrella M. Transforming growth factor-$\beta$ stimulates bone matrix apposition and bone cell replication in cultured fetal rat calvariae. Endocrinology 1990; 6: 1257-1265
  16. Elcin YM, Dixit V, Gitnick G.. Hepatocyte attachment on biodegradable modified chitosan membranes : In vitro evaluation for the development of liver organoids. Artif. Organs. 1998; 22: 837-846
  17. Hong L, Tabata Y, Miyamoto S, Yamamoto M, Yamada K, Hashimoto N, Ikada Y. Bone regeneration at rabbit skull defects treated with transforming growth factor ${\beta}1$ incorporated in hydrogels with different biodegradabilities. J. Neurosurg, 2000; 92: 315-325 https://doi.org/10.3171/jns.2000.92.2.0315
  18. Ueda H, Hong L, Yamamoto M, Shigeno K, Inoue M, Toba T, Yoshitani M, Nakamura T, Tabata Y, Shimizu Y. Use of collagen sponge incorporating transforming growth factor- ${\beta}1$ to promote bone repair in skull defects in rabbits. Biomaterials 2002; 23: 1003-1010 https://doi.org/10.1016/S0142-9612(01)00211-3
  19. Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan D. Bone morphogenetic protein-2 decorated silk fibroin fibers induce osteogenic differentiation of human bone marrow stromal cells. J. Biomed. Mater. Res. 2004; 71A: 528-537
  20. Wiemann M, Jennissen HP, Rumpf H, Winkler L, Chatzinikolaidou M, Schmitz I, Bingmann D. A reporter-cell assay for the detection of BMP-2 immobilized on porous and nonporous materials. J. Biomed. Mater.Res. 2002; 62: 119-127 https://doi.org/10.1002/jbm.10251