DOI QR코드

DOI QR Code

Non-linear analysis of composite steel-concrete beams with incomplete interaction

  • Cas, Bojan (University of Ljubljana, Faculty of Civil and Geodetic Engineering) ;
  • Bratina, Sebastjan (University of Ljubljana, Faculty of Civil and Geodetic Engineering) ;
  • Saje, Miran (University of Ljubljana, Faculty of Civil and Geodetic Engineering) ;
  • Planinc, Igor (University of Ljubljana, Faculty of Civil and Geodetic Engineering)
  • 발행 : 2004.12.25

초록

The flexibility of the connection between steel and concrete largely influences the global behaviour of the composite beam. Therefore the way the connection is modelled is the key issue in its structural analysis. Here we present a new strain-based finite element formulation in which we consider non-linear material and contact models. The computational efficiency and accuracy of the formulation is proved with the comparison of our numerical results with the experimental results of Abdel Aziz (1986) obtained in a full-scale laboratory test. The shear connectors are assumed to follow a non-linear load-slip relationship proposed by Ollgaard et al. (1971). We introduce the notion of the generalized slip, which offers a better physical interpretation of the behaviour of the contact and gives an additional material slip parameter. An excellent agreement of experimental and numerical results is obtained, using only a few finite elements. This demonstrates that the present numerical approach is appropriate for the evaluation of behaviour of planar composite beams and perfect for practical calculations.

키워드

참고문헌

  1. Abdel Aziz, K. (1986),"Modelisation et etude experimentale de poutres mixtes acier-beton a connexion partielle ou espace", PhD Thesis, Institut National des Sciences Appliquees des Rennes.
  2. Adekola, A.O. (1968),"Partial interaction between elastically connected elements of a composite beam", Int. J. Solids Struct., 4, 1125-1135. https://doi.org/10.1016/0020-7683(68)90027-9
  3. Aribert, J.M. and Abdel Aziz, K. (1985),"Calcul des poutres mixtes jusqu'a l'etat ultime avec un effet de soulevement a l'interface acier-beton", Constr. Metallique, 4, 3-41.
  4. Ayoub, A. and Filippou, F.C. (2000),"Mixed formulation of nonlinear steel-concrete composite beam element", J. Struct. Eng., ASCE 126(3), 371-381. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(371)
  5. Ayoub, A. (2001),"A two-field mixed variational principle for partially connected composite beams", Finite Element in Analysis and Design, 37, 929-959. https://doi.org/10.1016/S0168-874X(01)00076-2
  6. Bratina, S., Saje, M. and Planinc, I. (2003),"On materially and geometrically non-linear analysis of reinforcedconcrete planar frames", Int. J. Solids Struct., 41, 7181-7207.
  7. Cas, B. (2004),"Non-linear analysis of composite beams with interlayer slip", PhD Thesis (in Slovene), University of Ljubljana, Faculty of Civil and Geodetic Engineering.
  8. Cas, B., Saje, M. and Planinc, I. (2004),"Non-linear finite element analysis of composite planar frames with interlayer slip", Comput. & Struct., accepted for publication.
  9. Dall'Asta, A. and Zona, A. (2002),"Non-linear analysis of composite beams by displacement approach", Comput. & Struct., 80, 2217-2228. https://doi.org/10.1016/S0045-7949(02)00268-7
  10. Daniel, B.J. and Crisinel, M. (1993),"Composite slab behavior and strength analysis. Part I: Calculation procedure", J. Struct. Eng., ASCE 119(1), 16-35. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:1(16)
  11. Desayi, P. and Krishnan, S. (1964),"Equation for the stress-strain curve of concrete", J. Am. Concrete Institute, 61, 345-350.
  12. Fabbrocino, G., Manfredi, G. and Cosenza, E. (1999),"Non-linear analysis of composite beams under positive bending", Comput. & Struct., 70, 77-89. https://doi.org/10.1016/S0045-7949(98)00173-4
  13. Fabbrocino, G., Manfredi, G. and Cosenza, E. (2000),"Analysis of continuous composite beams including partial interaction and bond", J. Struct. Eng., ASCE 126(11), 1288-1294. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1288)
  14. Gattesco, N. (1999),"Analytical modeling of nonlinear behavior of composite beams with deformable connection", J. Constr. Steel Research, 52, 195-218. https://doi.org/10.1016/S0143-974X(99)00026-7
  15. Gattesco, N. and Giuriani, E. (1996),"Experimental study on stud shear connectors subjected to cyclic loading", J. Constr. Steel Research, 38(1), 1-21. https://doi.org/10.1016/0143-974X(96)00007-7
  16. Girhammar, U.A., Gopu, V.K.A. (1993),"Composite beam-columns with interlayer slip-exact analysis", J. Struct. Eng., ASCE, 119(4), 1265-1282. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:4(1265)
  17. Newmark, N.M., Siess, C.P. and Viest, I.M. (1951),"Test and analysis of composite beams with incomplete interaction", Proc. Soc. for Experimental Stress Analysis, 9, 75-92.
  18. Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971),"Shear strength of stud connectors in lightweight and normal weight concrete", AISC Eng. Journal, 8, 55-64.
  19. Planinc, I. (1998),"A quadratically convergent methods of critical points determination of structures", PhD Thesis (in Slovene), University of Ljubljana, Faculty of Civil and Geodetic Engineering.
  20. Ranzi, G., Bradford, M.A. and Uy, B. (2003),"A general method of analysis of composite beams with partial interaction", Steel and Composite Structures, 3(3), 169-184. https://doi.org/10.12989/scs.2003.3.3.169
  21. Razaqpur, A.G. and Nofal, M. (1989),"A finite element for modeling the nonlinear behavior of shear connectors in composite structures", Comput. & Struct., 32(1), 169-174. https://doi.org/10.1016/0045-7949(89)90082-5
  22. Robinson, H. and Naraine, K.S. (1988),"Slip and uplift effects in composite beams", Proc. of ASCE Engineering Foundation Conference on Composite Construction.
  23. Salari, R., Spacone, E., Shing, P.B. and Frangopol, D.M. (1998),"Nonlinear analysis of composite beams with deformable shear connectors", J. Struct. Eng., ASCE 124(10), 1148-1158. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1148)
  24. Vratanar, B. and Saje, M. (1998),"A consistent equilibrium in a cross-section of an elastic-plastic beam", Int. J. Solids Struct., 36, 311-337.
  25. Wegmuller, A.W. and Amer, H.N. (1997),"Nonlinear response of composite steel-concrete bridges", Comput. & Struct., 7(2), 161-169.

피인용 문헌

  1. The strain-based beam finite elements in multibody dynamics vol.305, pp.1-2, 2007, https://doi.org/10.1016/j.jsv.2007.03.055
  2. Geometrically and materially non-linear analysis of planar composite structures with an interlayer slip vol.114-115, 2013, https://doi.org/10.1016/j.compstruc.2012.09.012
  3. Buckling of layered wood columns vol.38, pp.8-9, 2007, https://doi.org/10.1016/j.advengsoft.2006.08.021
  4. Non-linear analysis of two-layer beams with interlayer slip and uplift 2011, https://doi.org/10.1016/j.compstruc.2011.06.007
  5. Short- and long-term analyses of composite beams with partial interaction stiffened by a longitudinal plate vol.6, pp.3, 2006, https://doi.org/10.12989/scs.2006.6.3.237
  6. The effect of transverse shear deformation on the buckling of two-layer composite columns with interlayer slip vol.46, pp.3, 2011, https://doi.org/10.1016/j.ijnonlinmec.2011.01.001
  7. Integrated analysis and design of composite beams with flexible shear connectors under sagging and hogging moments vol.6, pp.6, 2006, https://doi.org/10.12989/scs.2006.6.6.459
  8. Locking-free two-layer Timoshenko beam element with interlayer slip vol.43, pp.9, 2007, https://doi.org/10.1016/j.finel.2007.03.002
  9. The influence of boundary conditions and axial deformability on buckling behavior of two-layer composite columns with interlayer slip vol.32, pp.10, 2010, https://doi.org/10.1016/j.engstruct.2010.05.029
  10. Exact slip-buckling analysis of two-layer composite columns vol.46, pp.14-15, 2009, https://doi.org/10.1016/j.ijsolstr.2009.03.020
  11. Analytical solution of two-layer beam including interlayer slip and uplift vol.34, pp.6, 2010, https://doi.org/10.12989/sem.2010.34.6.667
  12. Non-linear analysis of two-layer timber beams considering interlayer slip and uplift vol.32, pp.6, 2010, https://doi.org/10.1016/j.engstruct.2010.02.009
  13. Analytical Solution of Two-Layer Beam Taking into account Interlayer Slip and Shear Deformation vol.133, pp.6, 2007, https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(886)
  14. Nonlinear Seismic Response Analysis of Steel–Concrete Composite Frames vol.134, pp.6, 2008, https://doi.org/10.1061/(ASCE)0733-9445(2008)134:6(986)
  15. Numerical and experimental analysis of timber composite beams with interlayer slip vol.30, pp.11, 2008, https://doi.org/10.1016/j.engstruct.2008.03.007
  16. Non-linear analysis of side-plated RC beams considering longitudinal and transversal interlayer slips vol.16, pp.6, 2014, https://doi.org/10.12989/scs.2014.16.6.559
  17. Numerical analysis of two-layer beams with interlayer slip and step-wise linear interface law vol.144, 2017, https://doi.org/10.1016/j.engstruct.2017.04.010
  18. Fire analysis of timber composite beams with interlayer slip vol.44, pp.5, 2009, https://doi.org/10.1016/j.firesaf.2009.03.007
  19. Fire analysis of steel–concrete composite beam with interlayer slip vol.89, pp.1-2, 2011, https://doi.org/10.1016/j.compstruc.2010.09.004
  20. Studies on structural behaviour of long-span continuous composite beams with flexible shear studs of limited ductility vol.17, pp.2, 2016, https://doi.org/10.1080/13287982.2016.1196572
  21. Probabilistic Nonlinear Response Analysis of Steel-Concrete Composite Beams vol.140, pp.1, 2014, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000803
  22. Flexural Behavior of Steel-Concrete Composite Beams Considering Interlayer Slip vol.145, pp.9, 2019, https://doi.org/10.1061/(asce)st.1943-541x.0002374
  23. Flexural performance of composite walls under out-of-plane loads vol.34, pp.4, 2004, https://doi.org/10.12989/scs.2020.34.4.525
  24. Analytic solution of angle-ply laminated plates under extension, bending, and torsion vol.54, pp.8, 2004, https://doi.org/10.1177/0021998319873025
  25. Improved analytical formulation for Steel-Concrete (SC) composite walls under out-of-plane loads vol.38, pp.4, 2004, https://doi.org/10.12989/scs.2021.38.4.463