References
- ACI Committee 318, Building code requirements for structural concrete (ACI 318-95), (1995), American Concrete Institute, Detroit.
- Australia Standards AS3600 (1994), Reinforced Concrete Structures, Standards Australia, Sydney.
- Australia Standards AS4100 (1998), Steel Structures, Standards Australia, Sydney.
- Eurocode 4 (1994), DD ENV 1994-1-1, "Design of composite steel and concrete structures. Part 1.1, General rules and rules for buildings (with U.K National Application Document)", British Standards Institution, London.
- Garder, J. and Jacobson, R. (1967), "Structural behaviour of concrete filled steel tubes", ACI, 65, 404-413.
- Gibbons, C. and Scott, D. (1996), "Composite hollow steel tubular columns filled with high strength concrete", Proc. Int. Conf. on Advances in Steel Structures, Hong Kong, 467-476.
- Guiaux, P. and Janss, J. (1970), "Buckling behaviour of columns made with steel tubes and filled with concrete", CIDECT, Issue 70/42/E: No MT65.
- Hajjar, J.F. and Gourley, B.C. (1996), "Representation of concrete filled steel tube cross-section strength", J. Struct. Eng., ASCE, 122(11), 1327-1336. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1327)
- Kato, B. (1996), "Column curves of steel-concrete composite members", J. Structural Steel Research, 39(2), 121-135. https://doi.org/10.1016/S0143-974X(96)00030-2
- Kilpatrick, A.E. and Rangan, B.V. (1997), "Tests on high strength composite concrete columns", Research Report No 1/97, Sch. of Civil Eng, Uni. of tech, Western Australia.
- Knowles, R.B. and Park, R. (1969), "Strength of concrete filled steel tubular columns", J. Struct. Div., ASCE, 95(ST12), 2565-2587.
- Lahlou, K. and Aitcin, P.C. (1997), "High performance concrete columns confined in thin steel casings", Bulletin Des Laboratories Des Ponts Et Chaussees, 209, 49-67 (In French).
- Lundberg, J.E. (1993), "The reliability of composite columns and beam-columns", Structural Engineering Report: No93-2: Department of Civil Engineering: Uni of Minnesota.
- Neogi, P.K., San, H.K. and Chapman, J.C. (1969), "Concrete filled tubular steel columns under eccentric loading", J. Struct. Eng., ASCE, 47(5), 187-195.
- Prion, H.G.L and Boehme, J. (1989), "Beam-column behaviour of steel tubes filled with high strength concrete", Proc. of the 4th Int. Colloquium, North Americas Session, New York, Structural Stability Research Council, 439-448.
- Rangan, B.V. and Joyce, M. (1992), "Strength of eccentrically loaded lender steel tubular columns filled with high strength concrete", ACI Struct J., 89(b), 676-681.
- Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng., ASCE, 477-484.
- Saw, H.S and Liew, J.Y. (2000), "Assessment of current methods for the design of composite columns in buildings", J. Constructional Steel Research, 53(2), 121-147. https://doi.org/10.1016/S0143-974X(99)00062-0
- Schneider, S.P. (1998), "Axially loaded concrete filled steel tubes", J. Struct. Eng., ASCE, 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
- Shakir-Khalil, H. and Mouli, M. (1990), "Further tests on concrete filled rectangular hollow section columns", The Structural Engineer, 68(20), 405-413.
- Shanmugan, N.E and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constructional Steel Research, 57(1), 1041-1080. https://doi.org/10.1016/S0143-974X(01)00021-9
- Uy, B. (1998), "Concrete filled fabricated steel box columns for multi-storey buildings", Progress in Structural Engineering and Material, 1(2), 150-158. https://doi.org/10.1002/pse.2260010207
- Uy, B. (2001), "Strength of short concrete filled high strength steel box columns", J. Constructional Steel Research, 57, 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6
- Virdi, K.S. and Dowling, P.J. (1973), "The ultimate strength of composite columns in biaxial bending", Proc. Institute of Civil Engineers, Part 32, 55, 251-172. https://doi.org/10.1680/iicep.1973.4958
- Wang, Y.C. (1999), "Tests on slender composite columns", J. Constructional Steel Research, 49, 25-41 https://doi.org/10.1016/S0143-974X(98)00202-8
Cited by
- Numerical modelling of concrete-filled steel box columns incorporating high strength materials vol.102, 2014, https://doi.org/10.1016/j.jcsr.2014.07.014
- Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks vol.11, pp.5, 2017, https://doi.org/10.1007/s11704-016-5113-6
- Axial strength of circular concrete-filled steel tube columns — DOE approach vol.66, pp.10, 2010, https://doi.org/10.1016/j.jcsr.2010.04.006
- Novel Design Procedures for Rectangular Hollow Steel Sections Subject to Compression and Major and Minor Axis Bending vol.20, pp.4, 2015, https://doi.org/10.1061/(ASCE)SC.1943-5576.0000248
- Experimental behaviour of square CFST under local bearing forces vol.74, 2014, https://doi.org/10.1016/j.tws.2013.09.022
- 08.47: Experimental study of cross-section shape and infill influence on CFST stub columns subjected to axial load vol.1, pp.2-3, 2017, https://doi.org/10.1002/cepa.268
- Structural design of stainless steel concrete filled columns vol.64, pp.11, 2008, https://doi.org/10.1016/j.jcsr.2008.04.012
- Using fibres and fly ash in concrete-filled steel tube columns vol.169, pp.10, 2016, https://doi.org/10.1680/jstbu.15.00130
- 08.15: Axial behaviour of concrete filled lean duplex stainless steel square hollow sections vol.1, pp.2-3, 2017, https://doi.org/10.1002/cepa.240
- Dune sand concrete-filled steel tubular (CFST) stub columns under axial compression: Experiments vol.124, 2018, https://doi.org/10.1016/j.tws.2017.12.006
- Experimental behavior and design method of rectangular concrete-filled tubular columns using Q460 high-strength steel vol.125, 2016, https://doi.org/10.1016/j.conbuildmat.2016.08.057
- Reliability-based assessment of American and European specifications for square CFT stub columns vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.811
- An experimental study on elliptical concrete filled columns under axial compression vol.87, 2013, https://doi.org/10.1016/j.jcsr.2013.04.002
- Finite element modelling of concrete-filled steel stub columns under axial compression vol.89, 2013, https://doi.org/10.1016/j.jcsr.2013.07.001
- Experiments on special-shaped CFST stub columns under axial compression vol.98, 2014, https://doi.org/10.1016/j.jcsr.2014.03.002
- Nonlinear analysis of concrete-filled steel SHS and RHS columns vol.44, pp.8, 2006, https://doi.org/10.1016/j.tws.2006.07.005
- Testing and analysis of concrete-filled elliptical hollow sections vol.30, pp.12, 2008, https://doi.org/10.1016/j.engstruct.2008.07.004
- Nonlinear behavior of concrete-filled stainless steel stiffened slender tube columns vol.45, pp.3, 2007, https://doi.org/10.1016/j.tws.2007.02.011
- A Strength Model for Square CFT Stub Columns with Compact Sections vol.94-96, pp.1662-7482, 2011, https://doi.org/10.4028/www.scientific.net/AMM.94-96.425
- Experimental evaluation on the seismic performance of high strength thin-walled composite members accounting for sectional aspect ratio effect vol.9, pp.4, 2004, https://doi.org/10.12989/scs.2009.9.4.367
- Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections vol.10, pp.6, 2004, https://doi.org/10.12989/scs.2010.10.6.517
- Stability study on tenon-connected SHS and CFST columns in modular construction vol.30, pp.2, 2004, https://doi.org/10.12989/scs.2019.30.2.185
- Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete vol.33, pp.1, 2019, https://doi.org/10.12989/scs.2019.33.1.067
- Numerical study of concrete-encased CFST under preload followed by sustained service load vol.35, pp.1, 2004, https://doi.org/10.12989/scs.2020.35.1.093
- Experimental study on steel-concrete composite beams with Uplift-restricted and slip-permitted screw-type (URSP-S) connectors vol.35, pp.2, 2004, https://doi.org/10.12989/scs.2020.35.2.261
- A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular Concrete-Filled Steel Tube Columns vol.25, pp.15, 2004, https://doi.org/10.3390/molecules25153486
- Performance of composite frame consisting of steel beams and concrete filled tubes under fire loading vol.36, pp.5, 2004, https://doi.org/10.12989/scs.2020.36.5.587
- Design of square and rectangular CFST cross-sectional capacities in compression vol.176, pp.None, 2004, https://doi.org/10.1016/j.jcsr.2020.106419
- The effects of cross-sectional shapes on the axial performance of concrete-filled steel tube columns vol.176, pp.None, 2021, https://doi.org/10.1016/j.jcsr.2020.106424
- Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment vol.230, pp.None, 2004, https://doi.org/10.1016/j.engstruct.2020.111687
- Experimental Study of Square Concrete-Filled Welded Cold-Formed Steel Columns Under Concentric Loading vol.46, pp.5, 2004, https://doi.org/10.1007/s13369-020-04797-9
- Simplified Nonlinear Simulation of Rectangular Concrete-Filled Steel Tubular Columns vol.147, pp.6, 2021, https://doi.org/10.1061/(asce)st.1943-541x.0003021
- Evaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modeling vol.248, pp.None, 2004, https://doi.org/10.1016/j.engstruct.2021.113297
- Performance and strength calculation of CFST columns with localized pitting corrosion damage vol.188, pp.None, 2004, https://doi.org/10.1016/j.jcsr.2021.107011