DOI QR코드

DOI QR Code

Three dimensional finite element simulations of fracture tests using the Craft concrete model

  • Jefferson, A.D. (Cardiff University, School of Engineering) ;
  • Barr, B.I.G. (Cardiff University, School of Engineering) ;
  • Bennett, T. (Cardiff University, School of Engineering) ;
  • Hee, S.C. (Cardiff University, School of Engineering)
  • Received : 2003.12.20
  • Accepted : 2004.06.17
  • Published : 2004.08.25

Abstract

Two enhancements to a recently developed plastic-damage-contact model for concrete are presented. The model itself, which uses planes of degradation that can undergo damage and separation but that can regain contact according to a contact law, is described. The first enhancement is a new damage evolution function which provides a completely smooth transition from the undamaged to the damaged state and from pre-peak to post-peak regions. The second is an improved contact function that governs the potential degree of contact with increasing opening on a crack plane. The use of a damage evolution function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm developed for the model implementation, and amendments to this algorithm to accommodate the new function are described. A series of unpublished experimental tests on notched specimens undertaken in Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using the modified Craft model implemented in the finite element program LUSAS. Comparisons between experimental and numerical data show reasonable agreement except that the numerical simulations do not fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded that the torsion tests described provide useful benchmark examples for the validation of three-dimensional numerical models for concrete.

Keywords

References

  1. Abdalla, H. M. and Karihaloo, B. L.(2003), "Determination of size independent specific fracture energy of concrete from three-point bend and wedge splitting tests", Mag. Conc. Res., 55, 133-141. https://doi.org/10.1680/macr.2003.55.2.133
  2. Barr, B. I. G. and Brokenshire, D. R.(1996), Torsion fracture tests, BRE Digest.
  3. Barr, B. I. G. and Lee, M. K.(2003), "Modelling the strain-softening behaviour of plain concrete using a double-exponential model", Mag. Conc. Res., 55(4).
  4. Bazant, Z. P. and Oh, B. H.(1983), "Crack band theory for fracture in concrete", Mater. Struct. 16, 155-177.
  5. Bazant, Z. P., Caner, F. C., Carol, I., Adley, M. D. and Akers, S. A.(2000), "Micro-plane model M4 for concrete. I Formulation with work conjugate deviatoric stress", J. Eng. Mech., ASCE, 126(9), 944-953. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(944)
  6. Brokenshire, D. R.(1996), "A study of torsion fracture tests", Ph. D. Thesis, Cardiff University, U.K.
  7. Crisfield, M. A. (1981), "A fast incremental/iterative solution procedure that handles snap-through", Comp. Struct. 13, 55-62. https://doi.org/10.1016/0045-7949(81)90108-5
  8. de Borst, R.(2003), "Numerical aspects ofcohesive zone models", Eng. Frac. Mech., 70(14), 1743-1757. https://doi.org/10.1016/S0013-7944(03)00122-X
  9. de Borst, R. and Nauta, P.(1985), "Non-orthogonal cracks in a smeared finite element model", Eng. Comput. 2, 35-46. https://doi.org/10.1108/eb023599
  10. Este, G. and Willam, K.(1994), "Fracture energy formulation for inelastic behaviour of plain concrete", J. Eng. Mech. ASCE, 120(9), 1983-2011. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:9(1983)
  11. Grassl, P., Lundgren, K. and Gylltoft, K.(2002), "Concrete in compression: a plasticity theory with a novel hardening law", Int. J. Solids Struct., 39, 5205-5223. https://doi.org/10.1016/S0020-7683(02)00408-0
  12. Gopalaratnam, V. S. and Shah, S. P.(1985), "Softening response of plain concrete in direct tension", ACI J. 82(3), 310-323.
  13. Guinea,G., Planas, J. and Elices, M.(1992), "Measurement of fracture energies using three-point bend tests :Part 1. Influence of experimental procedures", Mater. Struct. 25, 212-218. https://doi.org/10.1007/BF02473065
  14. Hassanzadeh, M.(1991), "Behaviour of fracture process zones in concrete influenced by simultaneously applied normal and shear displacements", Ph. D. Thesis, Lund Institute of Technology, Sweden.
  15. Hordijk, D. A. (1991), "Local approach to fatigue of concrete", Ph. D. Thesis Delft University of Technology, The Netherlands.
  16. Jefferson, A. D.(2003a),"Craft, a plastic-damage-contact model for concrete I. Model theory and thermodynamics", Int. J. Solids Struct., 40(22) 5973-5999.
  17. Jefferson, A. D.(2003b), "Craft, a plastic-damage-contact model for concrete II. Model implementation with implicit return mapping algorithm and consistent tangent matrix", Int. J. Solids Struct., 40(22), 6001-6022. https://doi.org/10.1016/S0020-7683(03)00391-3
  18. Jirasek, M and Zimmermann, T.(1998), "Rotating crack model with transition to scalar damage", ASCE J. Engng Mech., 124(3), 277-284. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(277)
  19. Jirasek, M and Zimmermann, T.(2001), "Embedded crack model: Part 1 Basic formulation, Part 2: Combination with smeared cracks",Int. J. Num. Meth. Eng., 50, 1269-1305. https://doi.org/10.1002/1097-0207(20010228)50:6<1269::AID-NME11>3.0.CO;2-U
  20. Krajcinovic, D.(1996), Damage Mechanics, Elsevier.
  21. Lubiner, J., Oliver, J., Oller, S. and Onate, E.(1989), "A plastic-damage model for concrete", Int. J. Solids Struct. 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  22. Luccioni, B. and Oller, S.(2003), "A directional damage model", Comput. Meth. Appl. Mech. Eng., 192(9-10), 1119-1145. https://doi.org/10.1016/S0045-7825(02)00577-7
  23. LUSAS (2003), User Reference Manual, FEA Ltd. Kingston Upon Thames London.
  24. Meschke, G., Lackner, R. and Mang, It A. (1998), "An anisotropic elastoplastic-damage model for plain concrete", Int. J. Num. Meth. Eng. 42, 703-727. https://doi.org/10.1002/(SICI)1097-0207(19980630)42:4<703::AID-NME384>3.0.CO;2-B
  25. Moes, N. and Belytschko, T. (2002), "Extended finite element method lor crack growth", Eng. Fract. Mech, 69, 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X
  26. Mosler, J. and Meschke, G. (2003), "3D modelling of strong discontinuities in elastoplastic solids: tlxed and rotating localisation formulations", Int. J. Num. Meth Eng., 57, 1553-1576. https://doi.org/10.1002/nme.731
  27. Oliver, J., Huespe, A. E., Pulido, M. D. G. and Chaves, E. (2002), "From continuum mechanics to fracture mechanics: the strong discontinuity approach", Eng. Fract. Mech, 69,113-136. https://doi.org/10.1016/S0013-7944(01)00060-1
  28. Oliver, J., Huespe, A. E. and Samaniego, E. (2003), "A study on finite elements for capturing strong discontinuities" Int. J. Num. Meth Engng, 56, 2135-2161. https://doi.org/10.1002/nme.657
  29. Ortiz, M. (1985), "Aconstitutive theory for the inelastic behaviour of concrete", Mechanics of Materials, 4, 67-93. https://doi.org/10.1016/0167-6636(85)90007-9
  30. Owen, D. R. J., Figueriras, J. A. and Damjanic, F.(1983), "Finite element analysis of reinforced and prestressed concrete structures including thermal loading", Comput. Methods Appl. Mech. Eng., 41, 323-366. https://doi.org/10.1016/0045-7825(83)90012-9
  31. Ozbolt, J. and Reinhardt, H. W. (2002), "Numerical study of mixed-mode fracture in concrete", Int. J. Fract., 118(2), 145-161. https://doi.org/10.1023/A:1022886127806
  32. Press, W. H., Teukolsky, S. A., Vettering, W. T. and Flannery, B. P.(1992), Numerical Recipes, Cambridge University Press.
  33. RILEM Technical Committee 50-FMC(1985), "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams", Mat. Struct., 18(106) 285-290.
  34. Rots, J. G.(1988), "Computational modeling of concrete fracture", Ph. D. Thesis, Delft University of Technology, The Netherlands.
  35. Walraven, J. C. and Reinhardt,H. W.(1981),"Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading", Heron 26(1A), Delft, The Netherlands.
  36. Wells, G. N. and Sluys, L. J.(2001), "A new method for modelling cohesive cracks using finite elements", Int. J. Num. Meth. Eng., 50, 2667-2682. https://doi.org/10.1002/nme.143
  37. Willam, K. and Warnke, E.(1975), "Constitutive models for triaxial behavior of concrete", Proc. Int. Assoc. Bridge Struct. Engrg, Report 19, Zurich, Switzerland, 1-30.
  38. van Mier, J. G. M.(1997), Fracture Processes of Concrete, CRC Press.

Cited by

  1. A nonlocal damage model for plain concrete consistent with cohesive fracture vol.207, pp.2, 2017, https://doi.org/10.1007/s10704-017-0225-z
  2. Energy consistent framework for continuously evolving 3D crack propagation vol.324, 2017, https://doi.org/10.1016/j.cma.2017.06.001
  3. 3D numerical modelling of twisting cracks under bending and torsion of skew notched beams vol.176, 2017, https://doi.org/10.1016/j.engfracmech.2017.03.025
  4. A computational framework of three-dimensional configurational-force-driven brittle crack propagation vol.198, pp.15-16, 2009, https://doi.org/10.1016/j.cma.2008.12.028
  5. A plastic-damage-contact constitutive model for concrete with smoothed evolution functions vol.169, 2016, https://doi.org/10.1016/j.compstruc.2016.02.008
  6. A new model for simulating cracks in cementitious composites vol.161, pp.1, 2008, https://doi.org/10.1680/eacm.2008.161.1.3
  7. Micromodelling of eccentrically loaded brickwork: Study of masonry wallettes vol.32, pp.5, 2010, https://doi.org/10.1016/j.engstruct.2009.12.050
  8. Three-dimensional brittle fracture: configurational-force-driven crack propagation vol.97, pp.7, 2014, https://doi.org/10.1002/nme.4603
  9. A marching cubes based failure surface propagation concept for three-dimensional finite elements with non-planar embedded strong discontinuities of higher-order kinematics vol.96, pp.6, 2013, https://doi.org/10.1002/nme.4546
  10. 3D Crack propagation in unreinforced concrete. vol.195, pp.37-40, 2006, https://doi.org/10.1016/j.cma.2005.10.023
  11. A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids 2017, https://doi.org/10.1016/j.ijsolstr.2017.10.022
  12. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures vol.10, pp.7, 2017, https://doi.org/10.3390/ma10070771
  13. Experimental Tests and Numerical Modelling of Hexagonal Concrete Specimens vol.40, pp.5, 2007, https://doi.org/10.1617/s11527-006-9157-1
  14. Eigenerosion for static and dynamic brittle fracture vol.182, 2017, https://doi.org/10.1016/j.engfracmech.2017.05.025
  15. Finite Element Modelling of Complex 3D Static and Dynamic Crack Propagation by Embedding Cohesive Elements in Abaqus vol.23, pp.3, 2010, https://doi.org/10.1016/S0894-9166(10)60030-4
  16. Validation of 3D crack propagation in plain concrete -Part I: Experimental investigation - the PCT3D test vol.4, pp.1, 2007, https://doi.org/10.12989/cac.2007.4.1.049
  17. Strain Injection Techniques for Modeling 3D Crack Propagation vol.774, pp.1662-9795, 2018, https://doi.org/10.4028/www.scientific.net/KEM.774.547
  18. Strain-injection and crack-path field techniques for 3D crack-propagation modelling in quasi-brittle materials vol.212, pp.1, 2018, https://doi.org/10.1007/s10704-018-0293-8
  19. Computer modeling to forecast accurate of efficiency parameters of different size of graphene platelet, carbon, and boron nitride nanotubes: A molecular dynamics simulation vol.27, pp.2, 2004, https://doi.org/10.12989/cac.2021.27.2.111
  20. Coupling of FEM and ordinary state-based peridynamics for brittle failure analysis in 3D vol.28, pp.9, 2004, https://doi.org/10.1080/15376494.2019.1602237