References
- Abdalla, H. M. and Karihaloo, B. L.(2003), "Determination of size independent specific fracture energy of concrete from three-point bend and wedge splitting tests", Mag. Conc. Res., 55, 133-141. https://doi.org/10.1680/macr.2003.55.2.133
- Barr, B. I. G. and Brokenshire, D. R.(1996), Torsion fracture tests, BRE Digest.
- Barr, B. I. G. and Lee, M. K.(2003), "Modelling the strain-softening behaviour of plain concrete using a double-exponential model", Mag. Conc. Res., 55(4).
- Bazant, Z. P. and Oh, B. H.(1983), "Crack band theory for fracture in concrete", Mater. Struct. 16, 155-177.
- Bazant, Z. P., Caner, F. C., Carol, I., Adley, M. D. and Akers, S. A.(2000), "Micro-plane model M4 for concrete. I Formulation with work conjugate deviatoric stress", J. Eng. Mech., ASCE, 126(9), 944-953. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(944)
- Brokenshire, D. R.(1996), "A study of torsion fracture tests", Ph. D. Thesis, Cardiff University, U.K.
- Crisfield, M. A. (1981), "A fast incremental/iterative solution procedure that handles snap-through", Comp. Struct. 13, 55-62. https://doi.org/10.1016/0045-7949(81)90108-5
- de Borst, R.(2003), "Numerical aspects ofcohesive zone models", Eng. Frac. Mech., 70(14), 1743-1757. https://doi.org/10.1016/S0013-7944(03)00122-X
- de Borst, R. and Nauta, P.(1985), "Non-orthogonal cracks in a smeared finite element model", Eng. Comput. 2, 35-46. https://doi.org/10.1108/eb023599
- Este, G. and Willam, K.(1994), "Fracture energy formulation for inelastic behaviour of plain concrete", J. Eng. Mech. ASCE, 120(9), 1983-2011. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:9(1983)
- Grassl, P., Lundgren, K. and Gylltoft, K.(2002), "Concrete in compression: a plasticity theory with a novel hardening law", Int. J. Solids Struct., 39, 5205-5223. https://doi.org/10.1016/S0020-7683(02)00408-0
- Gopalaratnam, V. S. and Shah, S. P.(1985), "Softening response of plain concrete in direct tension", ACI J. 82(3), 310-323.
- Guinea,G., Planas, J. and Elices, M.(1992), "Measurement of fracture energies using three-point bend tests :Part 1. Influence of experimental procedures", Mater. Struct. 25, 212-218. https://doi.org/10.1007/BF02473065
- Hassanzadeh, M.(1991), "Behaviour of fracture process zones in concrete influenced by simultaneously applied normal and shear displacements", Ph. D. Thesis, Lund Institute of Technology, Sweden.
- Hordijk, D. A. (1991), "Local approach to fatigue of concrete", Ph. D. Thesis Delft University of Technology, The Netherlands.
- Jefferson, A. D.(2003a),"Craft, a plastic-damage-contact model for concrete I. Model theory and thermodynamics", Int. J. Solids Struct., 40(22) 5973-5999.
- Jefferson, A. D.(2003b), "Craft, a plastic-damage-contact model for concrete II. Model implementation with implicit return mapping algorithm and consistent tangent matrix", Int. J. Solids Struct., 40(22), 6001-6022. https://doi.org/10.1016/S0020-7683(03)00391-3
- Jirasek, M and Zimmermann, T.(1998), "Rotating crack model with transition to scalar damage", ASCE J. Engng Mech., 124(3), 277-284. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(277)
- Jirasek, M and Zimmermann, T.(2001), "Embedded crack model: Part 1 Basic formulation, Part 2: Combination with smeared cracks",Int. J. Num. Meth. Eng., 50, 1269-1305. https://doi.org/10.1002/1097-0207(20010228)50:6<1269::AID-NME11>3.0.CO;2-U
- Krajcinovic, D.(1996), Damage Mechanics, Elsevier.
- Lubiner, J., Oliver, J., Oller, S. and Onate, E.(1989), "A plastic-damage model for concrete", Int. J. Solids Struct. 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
- Luccioni, B. and Oller, S.(2003), "A directional damage model", Comput. Meth. Appl. Mech. Eng., 192(9-10), 1119-1145. https://doi.org/10.1016/S0045-7825(02)00577-7
- LUSAS (2003), User Reference Manual, FEA Ltd. Kingston Upon Thames London.
- Meschke, G., Lackner, R. and Mang, It A. (1998), "An anisotropic elastoplastic-damage model for plain concrete", Int. J. Num. Meth. Eng. 42, 703-727. https://doi.org/10.1002/(SICI)1097-0207(19980630)42:4<703::AID-NME384>3.0.CO;2-B
- Moes, N. and Belytschko, T. (2002), "Extended finite element method lor crack growth", Eng. Fract. Mech, 69, 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X
- Mosler, J. and Meschke, G. (2003), "3D modelling of strong discontinuities in elastoplastic solids: tlxed and rotating localisation formulations", Int. J. Num. Meth Eng., 57, 1553-1576. https://doi.org/10.1002/nme.731
- Oliver, J., Huespe, A. E., Pulido, M. D. G. and Chaves, E. (2002), "From continuum mechanics to fracture mechanics: the strong discontinuity approach", Eng. Fract. Mech, 69,113-136. https://doi.org/10.1016/S0013-7944(01)00060-1
- Oliver, J., Huespe, A. E. and Samaniego, E. (2003), "A study on finite elements for capturing strong discontinuities" Int. J. Num. Meth Engng, 56, 2135-2161. https://doi.org/10.1002/nme.657
- Ortiz, M. (1985), "Aconstitutive theory for the inelastic behaviour of concrete", Mechanics of Materials, 4, 67-93. https://doi.org/10.1016/0167-6636(85)90007-9
- Owen, D. R. J., Figueriras, J. A. and Damjanic, F.(1983), "Finite element analysis of reinforced and prestressed concrete structures including thermal loading", Comput. Methods Appl. Mech. Eng., 41, 323-366. https://doi.org/10.1016/0045-7825(83)90012-9
- Ozbolt, J. and Reinhardt, H. W. (2002), "Numerical study of mixed-mode fracture in concrete", Int. J. Fract., 118(2), 145-161. https://doi.org/10.1023/A:1022886127806
- Press, W. H., Teukolsky, S. A., Vettering, W. T. and Flannery, B. P.(1992), Numerical Recipes, Cambridge University Press.
- RILEM Technical Committee 50-FMC(1985), "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams", Mat. Struct., 18(106) 285-290.
- Rots, J. G.(1988), "Computational modeling of concrete fracture", Ph. D. Thesis, Delft University of Technology, The Netherlands.
- Walraven, J. C. and Reinhardt,H. W.(1981),"Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading", Heron 26(1A), Delft, The Netherlands.
- Wells, G. N. and Sluys, L. J.(2001), "A new method for modelling cohesive cracks using finite elements", Int. J. Num. Meth. Eng., 50, 2667-2682. https://doi.org/10.1002/nme.143
- Willam, K. and Warnke, E.(1975), "Constitutive models for triaxial behavior of concrete", Proc. Int. Assoc. Bridge Struct. Engrg, Report 19, Zurich, Switzerland, 1-30.
- van Mier, J. G. M.(1997), Fracture Processes of Concrete, CRC Press.
Cited by
- A nonlocal damage model for plain concrete consistent with cohesive fracture vol.207, pp.2, 2017, https://doi.org/10.1007/s10704-017-0225-z
- Energy consistent framework for continuously evolving 3D crack propagation vol.324, 2017, https://doi.org/10.1016/j.cma.2017.06.001
- 3D numerical modelling of twisting cracks under bending and torsion of skew notched beams vol.176, 2017, https://doi.org/10.1016/j.engfracmech.2017.03.025
- A computational framework of three-dimensional configurational-force-driven brittle crack propagation vol.198, pp.15-16, 2009, https://doi.org/10.1016/j.cma.2008.12.028
- A plastic-damage-contact constitutive model for concrete with smoothed evolution functions vol.169, 2016, https://doi.org/10.1016/j.compstruc.2016.02.008
- A new model for simulating cracks in cementitious composites vol.161, pp.1, 2008, https://doi.org/10.1680/eacm.2008.161.1.3
- Micromodelling of eccentrically loaded brickwork: Study of masonry wallettes vol.32, pp.5, 2010, https://doi.org/10.1016/j.engstruct.2009.12.050
- Three-dimensional brittle fracture: configurational-force-driven crack propagation vol.97, pp.7, 2014, https://doi.org/10.1002/nme.4603
- A marching cubes based failure surface propagation concept for three-dimensional finite elements with non-planar embedded strong discontinuities of higher-order kinematics vol.96, pp.6, 2013, https://doi.org/10.1002/nme.4546
- 3D Crack propagation in unreinforced concrete. vol.195, pp.37-40, 2006, https://doi.org/10.1016/j.cma.2005.10.023
- A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids 2017, https://doi.org/10.1016/j.ijsolstr.2017.10.022
- Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures vol.10, pp.7, 2017, https://doi.org/10.3390/ma10070771
- Experimental Tests and Numerical Modelling of Hexagonal Concrete Specimens vol.40, pp.5, 2007, https://doi.org/10.1617/s11527-006-9157-1
- Eigenerosion for static and dynamic brittle fracture vol.182, 2017, https://doi.org/10.1016/j.engfracmech.2017.05.025
- Finite Element Modelling of Complex 3D Static and Dynamic Crack Propagation by Embedding Cohesive Elements in Abaqus vol.23, pp.3, 2010, https://doi.org/10.1016/S0894-9166(10)60030-4
- Validation of 3D crack propagation in plain concrete -Part I: Experimental investigation - the PCT3D test vol.4, pp.1, 2007, https://doi.org/10.12989/cac.2007.4.1.049
- Strain Injection Techniques for Modeling 3D Crack Propagation vol.774, pp.1662-9795, 2018, https://doi.org/10.4028/www.scientific.net/KEM.774.547
- Strain-injection and crack-path field techniques for 3D crack-propagation modelling in quasi-brittle materials vol.212, pp.1, 2018, https://doi.org/10.1007/s10704-018-0293-8
- Computer modeling to forecast accurate of efficiency parameters of different size of graphene platelet, carbon, and boron nitride nanotubes: A molecular dynamics simulation vol.27, pp.2, 2004, https://doi.org/10.12989/cac.2021.27.2.111
- Coupling of FEM and ordinary state-based peridynamics for brittle failure analysis in 3D vol.28, pp.9, 2004, https://doi.org/10.1080/15376494.2019.1602237