참고문헌
- Blevins, R.D. (1992), Applied Fluid Dynamics Handbook, Krieger Publishing Company, Malabar, Florida.
- Brownjohn, J.M.W. and Jakobsen, J.B. (2001), "Strategies for aeroelastic parameter identification from bridge deck free vibration data", J. Wind Eng. Ind. Aerod., 89, 1113-1136. https://doi.org/10.1016/S0167-6105(01)00091-5
- Chen, A., He, X. and Xiang, H. (2002), "Identification of 18 flutter derivatives of bridge decks", J. Wind Eng. Ind. Aerod., 90, 2007-2022. https://doi.org/10.1016/S0167-6105(02)00317-3
- Gan Chowdhury, A. and Sarkar, P.P. (2003), "Identification of eighteen flutter derivatives", Proc. the 11th International Conference on Wind Engineering, Lubbock, Texas, June.
- Gu, M., Zhang, R. and Xiang, H. (2000), "Identification of flutter derivatives of bridge decks", J. Wind Eng. Ind. Aerod., 84, 151-162. https://doi.org/10.1016/S0167-6105(99)00051-3
- Ibrahim, S.R. and Mikulcik, E.C. (1976), "The experimental determination of vibration parameters from time responses", The Shock and Vibration Bulletin, 46, 187-196.
- Sarkar, P.P. (1992), "New-identification methods applied to the response of flexible bridges to wind", PhD Thesis, The Johns Hopkins University, Baltimore, MD.
- Sarkar, P.P., Jones, N.P. and Scanlan, R.H. (1994), "Identification of aeroelastic parameters of flexible bridges", J. Eng. Mechanics, ASCE, 120(8), 1718-1742. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:8(1718)
- Sarkar, P.P., Gan Chowdhury, A. and Gardner, T.B. (2004), "A novel elastic suspension system for wind tunnel section model studies", J. Wind Eng. Ind. Aerod., 92, 23-40. https://doi.org/10.1016/j.jweia.2003.09.036
- Scanlan, R.H. (1978), "The action of flexible bridges under wind, I: flutter theory", J. Sound Vib., 60(2), 187-199. https://doi.org/10.1016/S0022-460X(78)80028-5
- Scanlan, R.H. (1987), "Interpreting aeroelastic models of cable-stayed bridges", J. Eng. Mechanics Div., ASCE, 113(4), 35-55.
- Singh, L., Jones, N.P., Scanlan, R.H. and Lorendeaux, O. (1995), "Simultaneous identification of 3-dof aeroelastic parameters", Proc. the 9th International Conference on Wind Eng., New Delhi, India.
- Zhu, L.D., Xu, Y.L., Zhang, F. and Xiang, H.F. (2002), "Tsing Ma bridge deck under skew winds - Part II: flutter derivatives", J. Wind Eng. Ind. Aerod., 90, 807-837. https://doi.org/10.1016/S0167-6105(02)00159-9
피인용 문헌
- A modification to the flutter derivative model vol.129, 2014, https://doi.org/10.1016/j.jweia.2014.03.013
- Comparative and sensitivity study of flutter derivatives of selected bridge deck sections, Part 1: Analysis of inter-laboratory experimental data vol.31, pp.1, 2009, https://doi.org/10.1016/j.engstruct.2008.07.020
- Extraction of rational functions by forced vibration method for time-domain analysis of long-span bridges vol.16, pp.6, 2013, https://doi.org/10.12989/was.2013.16.6.561
- Frequency- and time-domain methods for the numerical modeling of full-bridge aeroelasticity vol.85, pp.11-14, 2007, https://doi.org/10.1016/j.compstruc.2007.01.023
- Reynolds number effects on twin box girder long span bridge aerodynamics vol.20, pp.2, 2015, https://doi.org/10.12989/was.2015.20.2.327
- Identification of flutter derivatives of bridge decks using stochastic search technique vol.9, pp.6, 2006, https://doi.org/10.12989/was.2006.9.6.441
- Full-order and multimode flutter analysis using ANSYS vol.44, pp.9-10, 2008, https://doi.org/10.1016/j.finel.2008.01.011
- A simplified approach to bridge deck flutter vol.96, pp.2, 2008, https://doi.org/10.1016/j.jweia.2007.06.001
- Direct Approach to Extracting 18 Flutter Derivatives of Bridge Decks and Vulnerability Analysis on Identification Accuracy vol.28, pp.3, 2015, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000413
- Some new insights into the identification of bridge deck flutter derivatives vol.75, 2014, https://doi.org/10.1016/j.engstruct.2014.06.015
- Comparisons of bridges flutter derivatives and generalized ones vol.3, pp.3, 2009, https://doi.org/10.1007/s11709-009-0042-1
- Flutter and galloping of cable-supported bridges with porous wind barriers vol.171, 2017, https://doi.org/10.1016/j.jweia.2017.10.012
- New developments in bridge flutter analysis vol.165, pp.3, 2012, https://doi.org/10.1680/stbu.2012.165.3.139
- Air-induced nonlinear damping and added mass of vertically vibrating bridge deck section models under zero wind speed vol.169, 2017, https://doi.org/10.1016/j.jweia.2017.07.022
- On the limit cycles of aeroelastic systems with quadratic nonlinearities vol.30, pp.1, 2008, https://doi.org/10.12989/sem.2008.30.1.067
- Identification of Rational Functions using two-degree-of-freedom model by forced vibration method vol.43, 2012, https://doi.org/10.1016/j.engstruct.2012.05.003
- Identification of 18 flutter derivatives by covariance driven stochastic subspace method vol.9, pp.2, 2006, https://doi.org/10.12989/was.2006.9.2.159
- Dynamic Load and Response Prediction of HAWT Blades for Health Monitoring Application vol.39, pp.4, 2014, https://doi.org/10.5359/jawe.39.347
- Determination of flutter derivatives by a taut strip model vol.95, pp.9-11, 2007, https://doi.org/10.1016/j.jweia.2007.02.018
- Identification of aerodynamic parameters for eccentric bridge section model vol.98, pp.4-5, 2010, https://doi.org/10.1016/j.jweia.2009.10.016
- Effect of rain on flutter derivatives of bridge decks vol.11, pp.3, 2008, https://doi.org/10.12989/was.2008.11.3.209
- Research on the Influence of the Aerodynamic Measure on the Flutter Derivative of the Steel Truss Suspension Bridge vol.532-533, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.532-533.252
- Research on the Impact of Damping to the Flutter Derivatives of Steel Truss Suspension Bridge vol.532-533, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.532-533.325
- Extraction of bridge aeroelastic parameters by one reference-based stochastic subspace technique vol.14, pp.5, 2004, https://doi.org/10.12989/was.2011.14.5.413
- A 3-DOF forced vibration system for time-domain aeroelastic parameter identification vol.24, pp.5, 2004, https://doi.org/10.12989/was.2017.24.5.481
- Examination of experimental errors in Scanlan derivatives of a closed-box bridge deck vol.26, pp.4, 2004, https://doi.org/10.12989/was.2018.26.4.231
- Flutter Control of Bridge Deck Using Experimental Aeroderivatives and LQR-Driven Winglets vol.24, pp.11, 2004, https://doi.org/10.1061/(asce)be.1943-5592.0001467
- Nonparametric modeling of self-excited forces based on relations between flutter derivatives vol.31, pp.6, 2004, https://doi.org/10.12989/was.2020.31.6.561