References
- Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Num. Meth. Eng., 2, 419-451. https://doi.org/10.1002/nme.1620020310
- Belytschko, T., Wong, B.L. and Stolarski, H. (1989), "Assumed strain stabilization procedure for the 9-node Lagrange shell element", Int. J. Num. Meth. Eng., 28, 385-414. https://doi.org/10.1002/nme.1620280210
- Chaisomphob, T., Kanok-Nuculchai, W. and Nishino, F. (1988), "An automatic arc length algorithm for tracing equilibrium paths of nonlinear structures", Proc. of JSCE, Struct. Eng./Earthq. Eng., 5, 205-208.
- Crisfield, M.A. (1981), "A fast incremental/iterative solution procedure that handles snap-through", Comput. Struct., 13, 55-62. https://doi.org/10.1016/0045-7949(81)90108-5
- Fontes Valente, R.A., Natal Jorge, R.M., Cardoso, R.P.R., Cesar de Sa, J.M.A. and Gra´cio, J.J.A. (2003), "On the use of an enhanced transverse shear strain shell element for problems involving large rotations", Comput. Mech., 30, 286-296. https://doi.org/10.1007/s00466-002-0388-x
- Huang, H.C. and Hinton, E. (1986), "A new nine node degenerated shell element with enhanced membrane and shear interpolation", Int. J. Num. Meth. Eng., 22, 73-92. https://doi.org/10.1002/nme.1620220107
- Hughes, T.J.R. and Liu, W.K. (1981), "Nonlinear finite element analysis of shells: Part I. Three-dimensional shells", Comput. Meth. Appl. Mech. Eng., 26, 331-362. https://doi.org/10.1016/0045-7825(81)90121-3
- Jang, J. and Pinsky, P.M. (1987), "An assumed covariant strain based 9-node shell element", Int. J. Num. Meth. Eng., 24, 2389-2411. https://doi.org/10.1002/nme.1620241211
- Kanok-Nukulchai, W. and Wong, W.K. (1988), "Element-based Lagrangian formulation for large-deformation analysis", Comput. Struct., 30, 967-974. https://doi.org/10.1016/0045-7949(88)90136-8
- Kim, K.D., Lomboy, G.R. and Han, S.C. (2003), "A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells", Comput. Mech., 30(4), 330-342. https://doi.org/10.1007/s00466-003-0415-6
- Kim, K.D. and Park, T.H. (2002), "An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells", Struct. Eng. Mech., 13(4), 387-410. https://doi.org/10.12989/sem.2002.13.4.387
- Kim, K.D., Park, T. and Voyiadjis, G.Z. (1998), "Postbuckling analysis of composite panels with imperfection damage", Comput. Mech., 22, 375-387. https://doi.org/10.1007/s004660050369
- Kim, K.D. and Voyiadjis, G.Z. (1999), "Non-linear finite element analysis of composite panels", Composites Part B: Engineering, 30(4), 365-381. https://doi.org/10.1016/S1359-8368(99)00007-4
- Lee, S.J. and Kanok-Nukulchai, W. (1998), "A nine-node assumed strain finite element for large deformation analysis of laminated shells", Int. J. Num. Meth. Eng., 42, 777-798. https://doi.org/10.1002/(SICI)1097-0207(19980715)42:5<777::AID-NME365>3.0.CO;2-P
- Lee, S.W. and Pian, T.H.H. (1978), "Improvement of plate and shell finite elements by mixed formulation", AIAA J., 16, 29-34. https://doi.org/10.2514/3.60853
- Liu, W.K., Lam, D., Law, S.E. and Belytschko, T. (1986), "Resultant stress degenerated shell element", Comput. Meth. Appl. Mech. Eng., 55, 259-300. https://doi.org/10.1016/0045-7825(86)90056-3
- Ma, H. and Kanok-Nukulchai, W. (1989), "On the application of assumed strained methods", Structural Engineering and Construction, Achievements, Trends and Challenges, Kanok-Nukulchai et al. (eds.), AIT, Bankok.
- MacNeal, R.H. (1982), "Derivation of element stiffness matrices by assumed strain distributions", Nicl. Enggr. Design, 33, 1049-1058.
- Noor, A.K. and Mathers, M.D. (1976), "Anisotropy and shear deformation in laminated composite plates", AIAA, 14, 282-285. https://doi.org/10.2514/3.7096
- Ramm, E. (1977), "A plate/shell element for large deflections and rotations", Nonlinear Finite Element Analysis in Structural Mechanics, Wunderlich, W., Stein, E., Bathe, K.J. (eds.), M.I.T. Press, NY.
- Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, CRC Press, Florida.
- Rolfes, R. and Rohwer, K. (1997), "Improved transverse shear stress in composite finite element based on first order shear deformation theory", Int. J. Num. Meth. Eng., 40, 51-60. https://doi.org/10.1002/(SICI)1097-0207(19970115)40:1<51::AID-NME49>3.0.CO;2-3
- Saigal, S., Kapania, R.K. and Yang, Y.T. (1986), "Geometrically nonlinear finite element analysis of imperfect laminated shells", J. Compos. Mater., 20, 197-214. https://doi.org/10.1177/002199838602000206
- Simo, J.C. and Hughes, T.J.R. (1986), "On the variational formulations of assumed strain methods", J. Appl. Mech., ASME, 53, 51-54. https://doi.org/10.1115/1.3171737
- Simo, J.C. (1993), "On a stress resultant geometrically exact shell model. Part VII: Shell intersections with 5/6- DOF finite element formulations", Comput. Meth. Appl. Mech. Eng., 108, 319-339. https://doi.org/10.1016/0045-7825(93)90008-L
- White, D.W. and Abel, J.F. (1989), "Testing of shell finite element accuracy and robustness", Finite Element Method in Analysis and Design, 6, 129-151. https://doi.org/10.1016/0168-874X(89)90040-1
- Wong, Wai-Kong (1984), "Pseudo Lagrangian formulation for large deformation analysis of continua and structures", Master Thesis, School of Civil Engineering, A.I.T.
- XFINAS (2003), Nonlinear Structural Dynamic Analysis System, School of Civil Engineering, A.I.T., Thailand.
- Yoo, S.W. and Choi, C.K. (2000), "Geometrically nonlinear analysis of laminated composites by an improved degenerated shell element", Struct. Eng. Mech., 9(1), 123-456.
Cited by
- A curved triangular element for nonlinear analysis of laminated shells vol.153, 2016, https://doi.org/10.1016/j.compstruct.2016.06.052
- Postbuckling analysis of laminated composite plates subjected to the combination of in-plane shear, compression and lateral loading vol.43, pp.18-19, 2006, https://doi.org/10.1016/j.ijsolstr.2005.08.004
- A reduced integration solid-shell finite element based on the EAS and the ANS concept-Large deformation problems vol.85, pp.3, 2011, https://doi.org/10.1002/nme.2966
- Non-linear Analysis of Laminated Composite Plates with Multi-directional Stiffness Degradation vol.11, pp.7, 2010, https://doi.org/10.5762/KAIS.2010.11.7.2661
- Natural Frequency and Mode Characteristics of Composite Pole Structures for Different Layup Sequences vol.4, pp.1, 2013, https://doi.org/10.11004/kosacs.2013.4.1.009
- A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures vol.7, pp.4, 2015, https://doi.org/10.1177/1687814015581272
- Geometrically nonlinear analysis of laminated composite thin shells using a modified first-order shear deformable element-based Lagrangian shell element vol.82, pp.3, 2008, https://doi.org/10.1016/j.compstruct.2007.01.027
- Geometrically Nonlinear Analysis of Hinged Cylindrical Laminated Composite Shells vol.3, pp.2, 2012, https://doi.org/10.11004/kosacs.2012.3.2.001
- Buckling Analysis of Laminated Composite Plates under the In-plane Compression and Shear Loadings vol.11, pp.12, 2010, https://doi.org/10.5762/KAIS.2010.11.12.5199
- An 8-Node Shell Element for Nonlinear Analysis of Shells Using the Refined Combination of Membrane and Shear Interpolation Functions vol.2013, 2013, https://doi.org/10.1155/2013/276304
- The development of laminated composite plate theories: a review vol.47, pp.16, 2012, https://doi.org/10.1007/s10853-012-6329-y
- A literature review on computational models for laminated composite and sandwich panels vol.1, pp.1, 2011, https://doi.org/10.2478/s13531-011-0005-x
- Geometrically non-linear analysis of laminated composite structures using a 4-node co-rotational shell element with enhanced strains vol.42, pp.6, 2007, https://doi.org/10.1016/j.ijnonlinmec.2007.03.011
- A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis vol.95, pp.2, 2013, https://doi.org/10.1002/nme.4504
- Transient analysis of FGM and laminated composite structures using a refined 8-node ANS shell element vol.56, 2014, https://doi.org/10.1016/j.compositesb.2013.08.044
- Shear buckling responses of laminated composite shells using a modified 8-node ANS shell element vol.109, 2014, https://doi.org/10.1016/j.compstruct.2013.10.055
- Geometrically non-linear analysis of arbitrary elastic supported plates and shells using an element-based Lagrangian shell element vol.43, pp.1, 2008, https://doi.org/10.1016/j.ijnonlinmec.2007.09.011
- Non-linear analysis of laminated composite and sigmoid functionally graded anisotropic structures using a higher-order shear deformable natural Lagrangian shell element vol.89, pp.1, 2009, https://doi.org/10.1016/j.compstruct.2008.08.006
- Free and forced vibration analysis of laminated composite plates and shells using a 9-node assumed strain shell element vol.39, pp.1, 2006, https://doi.org/10.1007/s00466-005-0007-8
- Postbuckling analysis of laminated composite shells under shear loads vol.21, pp.2, 2016, https://doi.org/10.12989/scs.2016.21.2.373
- Nine-Node Resultant-Stress Shell Element for Free Vibration and Large Deflection of Composite Laminates vol.19, pp.2, 2006, https://doi.org/10.1061/(asce)0893-1321(2006)19:2(103)
- Nonlinear thermoelastic response of laminated composite conical panels vol.34, pp.1, 2010, https://doi.org/10.12989/sem.2010.34.1.097
- A refined finite element for first-order plate and shell analysis vol.40, pp.2, 2004, https://doi.org/10.12989/sem.2011.40.2.191
- An improved treatment of mixed interpolation functions in eight-node assumed natural strain shell element for vibration analysis vol.5, pp.1, 2004, https://doi.org/10.1080/19373260.2012.638062