References
- Badari Narayana, K. (1991), "A general procedure for evaluation of crack closure integral in problems of fracture mechanics", Ph.D. Thesis, Indian Institute of Science, Bangalore, India.
- Badari Narayana, K. and Dattaguru, B. (1996), "Certain aspects related to computation by modified crack closure integral", Engg. Fract. Mech., 55, 335-339. https://doi.org/10.1016/0013-7944(96)00017-3
- Badari Narayana, K., Dattaguru, B., Ramamurthy, T.S. and Vijayakumar, K. (1990), "Modified crack closure integral using 6-noded isoparametric quadrilateral singular element", Engg. Fract. Mech., 36, 945-955. https://doi.org/10.1016/0013-7944(90)90270-Q
- Barsoum, R.S. (1976), "On the use of isoparametric finite elements in linear fracture mechanics", Int. J. Num. Meth. Engg., 10, 25-37. https://doi.org/10.1002/nme.1620100103
- Buchholz, F.G. (1984), "Improved formulae for the FE-calculation of the strain energy release rate by the modified crack closure integral method", Proc. 4th World Congress and Exhibition in FEM, Interlaken, 650- 659.
- Buchholz, F.G., Chergui, A. and Richard, H.A. (2001), "Computational fracture analysis by the MVCCI method regarding 3-D and mode coupling effects for different specimens and loading conditions", Proc. 6th Int. Conf. Biaxial/Multiaxial Fatigue and Fracture, M. De Freitas (Ed.), Portugal, 991-998.
- Cotterell, B. (2002), "The past, present and future of fracture mechanics", Engg. Fract. Mech., 69, 533-553. https://doi.org/10.1016/S0013-7944(01)00101-1
- Dhondt, G., Chergui, A. and Buchholz, F.G. (2001), "Computational fracture analysis of different specimens regarding 3-D and mode coupling effects", Engg. Fract. Mech., 68, 383-401. https://doi.org/10.1016/S0013-7944(00)00104-1
- Irwin, G.R. (1958), "Fracture", Handbook Phys., 6, 551-590.
- Liebowitz, H. and Moyer, E.T. (1989), "Finite element method in fracture mechanics", Comput. Struct., 31, 1-9. https://doi.org/10.1016/0045-7949(89)90160-0
- Owen, D.R.J. and Fawkes, A.J. (1982), Engineering Fracture Mechanics: Numerical Methods and Applications, Pine ridge Press Ltd., Swansea, UK.
- Raju, I.S. (1986), Simple Formulas for Strain Energy Release Rate with Singular Order and Simple Finite Elements, NASA-CR-178186.
- Rooke, D.P. and Cartwright, D.T. (1976), Compendium of Stress Intensity Factors, Her Majesty's Stationery Office, London.
- Rybicki, E.F. and Kanninen, M.F. (1977), "A finite element calculation of stress intensity factors by a modified crack closure integral", Engg. Fract. Mech., 9, 931-938. https://doi.org/10.1016/0013-7944(77)90013-3
- Schijve, J. (2003), "Fatigue of structures and materials in the 20th century and the state of the art", Int. J. Fatigue, 25, 679-702. https://doi.org/10.1016/S0142-1123(03)00051-3
- Young, M.J. and Sun, C.T. (1993), "On the strain energy release rate for a cracked plate subject to out-of-plane bending moment", Int. J. Fract., 60, 227-247. https://doi.org/10.1007/BF00012511
- Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, Vol. I: The basis, Vol. II: Solid Mechanics, Butterworth-Hieneman Ltd.
Cited by
- New a posteriori error estimator and adaptive mesh refinement strategy for 2-D crack problems vol.73, pp.6, 2006, https://doi.org/10.1016/j.engfracmech.2005.10.003
- Simulation and validation of disbond growth in co-cured composite skin–stringer specimens using cohesive elements 2017, https://doi.org/10.1177/0021998317715505