DOI QR코드

DOI QR Code

Assumed strain finite strip method using the non-periodic B-spline

  • 투고 : 2004.01.12
  • 심사 : 2004.06.26
  • 발행 : 2004.11.25

초록

An assumed strain finite strip method(FSM) using the non-periodic B-spline for a shell is presented. In the present method, the shape function based on the non-periodic B-splines satisfies the Kronecker delta properties at the boundaries and allows to introduce interior supports in much the same way as in a conventional finite element formulation. In the formulation for a shell, the geometry of the shell is defined by non-periodic B3-splines without any tangential vectors at the ends and the penalty function method is used to incorporate the drilling degrees of freedom. In this study, new assumed strain fields using the non-periodic B-spline function are proposed to overcome the locking problems. The strip formulated in this way does not posses any spurious zero energy modes. The versatility and accuracy of the new approach are demonstrated through a series of numerical examples.

키워드

참고문헌

  1. Au, F.T.K. and Cheung, Y.K. (1993), "Isoparametric spline finite strip for plane structures", Comput. Struct., 48(1), 23-32. https://doi.org/10.1016/0045-7949(93)90455-M
  2. Bathe, K.J. and Dvorkin, E.N. (1985), "A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation", Int. J. Numer. Meth. Eng., 21, 367-383. https://doi.org/10.1002/nme.1620210213
  3. Belytschko, T., Wong, B.L. and Stolarski, H. (1989), "Assumed strain stabilization procedure for the 9-node Lagrange shell element", Int. J. Numer. Meth. Eng., 28, 385-414. https://doi.org/10.1002/nme.1620280210
  4. Cheung, Y.K. (1976), The Finite Strip Method in Structural Analysis, Pergamon, New York.
  5. Cheung, Y.K. (1983), "Static analysis of right box girder bridges by spline finite strip method", Proc. of the Institution of Civil Engineers, Part 2, 75, June, 311-323. https://doi.org/10.1680/iicep.1983.1507
  6. Cheung, Y.K. and Au, F.T.K. (1995), "Isoparametric spline finite strip for degenerated shells", Thin-Walled Structures, 21, 65-92. https://doi.org/10.1016/0263-8231(94)P4393-O
  7. Choi, C.K. and Paik, J.G. (1994), "An efficient four node degenerated shell element based on the assumed covariant strain", Struct. Eng. Mech., 2(1), 17-34. https://doi.org/10.12989/sem.1994.2.1.017
  8. Choi, C.K., Lee, P.S. and Park, Y.M. (1999), "High performance 4-node flat shell element: NMS-4F element", Struct. Eng. Mech., 8(2), 209-234.
  9. Choi, C.K. and Hong, H.S. (2001), "Finite strip analysis of multi-span box girder bridges by using non-periodic B-spline interpolation", Struct. Eng. Mech., 12(3), 313-328. https://doi.org/10.12989/sem.2001.12.3.313
  10. Choi, C.K., Hong, H.S. and Kim, K.H. (2003), "Unequally spaced non-periodic B-spline finite strip method", Int. J. Numer. Meth. Eng., 57, 35-55. https://doi.org/10.1002/nme.669
  11. Chroscielewski, J., Makowski, J. and Stumpf, H. (1997), "Finite element analysis of smooth, folded and multishell structure", Comput. Meth. Appl. Mech. Eng., 141, 1-46. https://doi.org/10.1016/S0045-7825(96)01046-8
  12. Cook, R.D. (1986), "On the Allman triangle and a related quadrilateral element", Comput. Struct., 22, 1065-1067. https://doi.org/10.1016/0045-7949(86)90167-7
  13. Faux, I.D. and Pratt, M.J. (1981), Computational Geometry for Design and Manufacture, Ellis Horwood.
  14. Farin, G. (1992), Curves and Surfaces for Computer Aided Geometric Design - A Practical Guide, Academic Press.
  15. Hinton, E. and Huang, H.C. (1986), "A family of quadrilateral Mindlin plate elements with substitute shear strain fields", Comput. Struct., 23(3), 409-431. https://doi.org/10.1016/0045-7949(86)90232-4
  16. Ibrahimbegovic, A., Taylor, R.L. and Wilson, E.L. (1990), "A robust quadrilateral membrane finite element with drilling degree of freedom", Int. J. Numer. Meth. Eng., 30, 445-457. https://doi.org/10.1002/nme.1620300305
  17. Jang, J. and Pinsky, P.M. (1987), "An assumed covariant strain based 9-node shell element", Int. J. Numer. Meth. Eng., 24, 2389-2411. https://doi.org/10.1002/nme.1620241211
  18. Jetteur, P. and Frey, F. (1986), "A four node Marguerre element for nonlinear shell analysis", Engineering Computations, 3, 276-282. https://doi.org/10.1108/eb023667
  19. Kebari, H. and Cassell, A.C. (1991), "Non-conforming modes stabilization of a nine-node stress-resultant degenerated shell element with drilling freedom", Comput. Struct., 40(3), 569-580. https://doi.org/10.1016/0045-7949(91)90227-D
  20. Li, W.Y., Chueng, Y.K. and Tham, L.G. (1986), "Spline finite strip analysis of general plates", J. Engng. Mech., ASCE, 112(1), 43-54. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:1(43)
  21. Liu, W.K., Law, E.S., Lam, D. and Belyschko, T. (1986), "Resultant-stress degenerated-shell element", Comput. Meth. Appl. Mech. Eng., 55, 259-300. https://doi.org/10.1016/0045-7825(86)90056-3
  22. MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elements in Analysis and Design, 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
  23. MacNeal, R.H. and Harder, R.L. (1988), "A refiend four-node membrane element with rotational degrees of freedom", Comput. Struct., 28, 75-84. https://doi.org/10.1016/0045-7949(88)90094-6
  24. Milford, R.V. and Schnobrich, W.C. (1986), "Degenerated isoparametric finite elements using the explicit integration", Int. J. Numer. Meth. Eng., 23, 133-154. https://doi.org/10.1002/nme.1620230111
  25. Nukulchai, W.K. (1979), "A simple and efficient finite element for general shell analysis", Int. J. Numer. Meth. Eng., 14, 179-200. https://doi.org/10.1002/nme.1620140204
  26. Park, K.C. and Stanley, G.M. (1986), "A curved $C^0$ shell element based on assumed natural-coordinate strains", J. Appl. Mech., ASME, 53, 279-290.
  27. Simo, J.C., Fox, D.D. and Rifai, M.S. (1989), "On a stress resultant geometrically exact shell model Part II : The linear theory ; computational aspects", Comput. Meth. Appl. Mech. Eng., 53, 53-92.
  28. Taylor, R.L. (1987), "Finite element analysis of linear shell problem", in Whiteman, J.R.(ed.), Proc. of the Mathematics in Finite Elements and Application, Academic Press, NewYork, 191-203.
  29. Tham, L.G., Li, W.Y. and Cheung, Y.K. (1986), "Bending of skew plates by spline finite strip method", Comput. Struct., 22(1), 31-38. https://doi.org/10.1016/0045-7949(86)90082-9
  30. Tham, L.G. (1990), "Application of spline finite strip method in the analysis of space structures", Thin-Walled Structures, 10, 235-246. https://doi.org/10.1016/0263-8231(90)90066-8
  31. Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis plates and shells", Int. J. Numer. Meth. Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211
  32. Zienkiewicz, O.C. (1991), The Finite Element Method, McGraw-Hill, fourth edn., 2, London.

피인용 문헌

  1. Geometry-dependent MITC method for a 2-node iso-beam element vol.29, pp.2, 2008, https://doi.org/10.12989/sem.2008.29.2.203