References
- Au, F.T.K. and Cheung, Y.K. (1993), "Isoparametric spline finite strip for plane structures", Comput. Struct., 48(1), 23-32. https://doi.org/10.1016/0045-7949(93)90455-M
- Bathe, K.J. and Dvorkin, E.N. (1985), "A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation", Int. J. Numer. Meth. Eng., 21, 367-383. https://doi.org/10.1002/nme.1620210213
- Belytschko, T., Wong, B.L. and Stolarski, H. (1989), "Assumed strain stabilization procedure for the 9-node Lagrange shell element", Int. J. Numer. Meth. Eng., 28, 385-414. https://doi.org/10.1002/nme.1620280210
- Cheung, Y.K. (1976), The Finite Strip Method in Structural Analysis, Pergamon, New York.
- Cheung, Y.K. (1983), "Static analysis of right box girder bridges by spline finite strip method", Proc. of the Institution of Civil Engineers, Part 2, 75, June, 311-323. https://doi.org/10.1680/iicep.1983.1507
- Cheung, Y.K. and Au, F.T.K. (1995), "Isoparametric spline finite strip for degenerated shells", Thin-Walled Structures, 21, 65-92. https://doi.org/10.1016/0263-8231(94)P4393-O
- Choi, C.K. and Paik, J.G. (1994), "An efficient four node degenerated shell element based on the assumed covariant strain", Struct. Eng. Mech., 2(1), 17-34. https://doi.org/10.12989/sem.1994.2.1.017
- Choi, C.K., Lee, P.S. and Park, Y.M. (1999), "High performance 4-node flat shell element: NMS-4F element", Struct. Eng. Mech., 8(2), 209-234.
- Choi, C.K. and Hong, H.S. (2001), "Finite strip analysis of multi-span box girder bridges by using non-periodic B-spline interpolation", Struct. Eng. Mech., 12(3), 313-328. https://doi.org/10.12989/sem.2001.12.3.313
- Choi, C.K., Hong, H.S. and Kim, K.H. (2003), "Unequally spaced non-periodic B-spline finite strip method", Int. J. Numer. Meth. Eng., 57, 35-55. https://doi.org/10.1002/nme.669
- Chroscielewski, J., Makowski, J. and Stumpf, H. (1997), "Finite element analysis of smooth, folded and multishell structure", Comput. Meth. Appl. Mech. Eng., 141, 1-46. https://doi.org/10.1016/S0045-7825(96)01046-8
- Cook, R.D. (1986), "On the Allman triangle and a related quadrilateral element", Comput. Struct., 22, 1065-1067. https://doi.org/10.1016/0045-7949(86)90167-7
- Faux, I.D. and Pratt, M.J. (1981), Computational Geometry for Design and Manufacture, Ellis Horwood.
- Farin, G. (1992), Curves and Surfaces for Computer Aided Geometric Design - A Practical Guide, Academic Press.
- Hinton, E. and Huang, H.C. (1986), "A family of quadrilateral Mindlin plate elements with substitute shear strain fields", Comput. Struct., 23(3), 409-431. https://doi.org/10.1016/0045-7949(86)90232-4
- Ibrahimbegovic, A., Taylor, R.L. and Wilson, E.L. (1990), "A robust quadrilateral membrane finite element with drilling degree of freedom", Int. J. Numer. Meth. Eng., 30, 445-457. https://doi.org/10.1002/nme.1620300305
- Jang, J. and Pinsky, P.M. (1987), "An assumed covariant strain based 9-node shell element", Int. J. Numer. Meth. Eng., 24, 2389-2411. https://doi.org/10.1002/nme.1620241211
- Jetteur, P. and Frey, F. (1986), "A four node Marguerre element for nonlinear shell analysis", Engineering Computations, 3, 276-282. https://doi.org/10.1108/eb023667
- Kebari, H. and Cassell, A.C. (1991), "Non-conforming modes stabilization of a nine-node stress-resultant degenerated shell element with drilling freedom", Comput. Struct., 40(3), 569-580. https://doi.org/10.1016/0045-7949(91)90227-D
- Li, W.Y., Chueng, Y.K. and Tham, L.G. (1986), "Spline finite strip analysis of general plates", J. Engng. Mech., ASCE, 112(1), 43-54. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:1(43)
- Liu, W.K., Law, E.S., Lam, D. and Belyschko, T. (1986), "Resultant-stress degenerated-shell element", Comput. Meth. Appl. Mech. Eng., 55, 259-300. https://doi.org/10.1016/0045-7825(86)90056-3
- MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elements in Analysis and Design, 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
- MacNeal, R.H. and Harder, R.L. (1988), "A refiend four-node membrane element with rotational degrees of freedom", Comput. Struct., 28, 75-84. https://doi.org/10.1016/0045-7949(88)90094-6
- Milford, R.V. and Schnobrich, W.C. (1986), "Degenerated isoparametric finite elements using the explicit integration", Int. J. Numer. Meth. Eng., 23, 133-154. https://doi.org/10.1002/nme.1620230111
- Nukulchai, W.K. (1979), "A simple and efficient finite element for general shell analysis", Int. J. Numer. Meth. Eng., 14, 179-200. https://doi.org/10.1002/nme.1620140204
-
Park, K.C. and Stanley, G.M. (1986), "A curved
$C^0$ shell element based on assumed natural-coordinate strains", J. Appl. Mech., ASME, 53, 279-290. - Simo, J.C., Fox, D.D. and Rifai, M.S. (1989), "On a stress resultant geometrically exact shell model Part II : The linear theory ; computational aspects", Comput. Meth. Appl. Mech. Eng., 53, 53-92.
- Taylor, R.L. (1987), "Finite element analysis of linear shell problem", in Whiteman, J.R.(ed.), Proc. of the Mathematics in Finite Elements and Application, Academic Press, NewYork, 191-203.
- Tham, L.G., Li, W.Y. and Cheung, Y.K. (1986), "Bending of skew plates by spline finite strip method", Comput. Struct., 22(1), 31-38. https://doi.org/10.1016/0045-7949(86)90082-9
- Tham, L.G. (1990), "Application of spline finite strip method in the analysis of space structures", Thin-Walled Structures, 10, 235-246. https://doi.org/10.1016/0263-8231(90)90066-8
- Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis plates and shells", Int. J. Numer. Meth. Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211
- Zienkiewicz, O.C. (1991), The Finite Element Method, McGraw-Hill, fourth edn., 2, London.
Cited by
- Geometry-dependent MITC method for a 2-node iso-beam element vol.29, pp.2, 2008, https://doi.org/10.12989/sem.2008.29.2.203