Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Chen, J.Y., Ding, H.J. and Hou, P.F. (2003), "Analytical solutions of simply supported magneto-electro-elastic circular plate under uniform loads", J. of Zhejiang University SCIENCE, 4(5), 560-564. https://doi.org/10.1631/jzus.2003.0560
- Ding, H.J., Wang, G.Q. and Chen, W.Q. (1997a), "General solution of plane problem of piezoelectric media expressed by "harmonic functions"", Applied Mathematics and Mechanics, 18, 757-764. https://doi.org/10.1007/BF00763127
- Ding, H.J., Wang, G.Q. and Chen, W.Q. (1997b), "Green's functions for a two-phase infinite piezoelectric plane", Proc. of Royal Society of London(A), 453, 2241-2257. https://doi.org/10.1098/rspa.1997.0120
- Hou, P.F., Leung, Andrew Y.T. and Ding, H.J. (2003), "The elliptical Hertizan contact of transversely isotropic magneto-electro-elastic bodies", Int. J. Solids Struct., 40, 2833-2850. https://doi.org/10.1016/S0020-7683(02)00670-4
- Kogan, L., Hui, C.Y. and Molkov, V. (1996), "Stress and induction field of a spheroidal inclusion or a pennyshaped crack in a transversely isotropic piezoelectric material", Int. J. Solids Struct., 33(19), 2719-2737. https://doi.org/10.1016/0020-7683(95)00182-4
- Liu, J.X., Liu, X.L. and Zhao, Y.B. (2001), "Green's functions for anisotropic magneto-electro-elastic solids with an elliptical cavity or a crack", Int. J. Eng. Sci., 39, 1405-1418. https://doi.org/10.1016/S0020-7225(01)00005-2
- Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech., ASME, 68, 608-618. https://doi.org/10.1115/1.1380385
- Pan, E. (2002a), "Three-dimensional Green's function in anisotropic magneto-electro-elastic bimaterials", Z. Angew. Math. Phys., 53, 815-838. https://doi.org/10.1007/s00033-002-8184-1
- Pan, E. (2002b), "Free vibrations of simply supported and multilayered magneto-electro-elastic plates", J. of Sound Vib., 252(3), 429-442. https://doi.org/10.1006/jsvi.2001.3693
- Sosa, H.A. and Castro, M.A. (1994), "On concentrated loads at the boundary of a piezoelectric half-plane", J. Mech. Phys. Solids, 42(7), 1105-1122. https://doi.org/10.1016/0022-5096(94)90062-0
- Timoshenko, S.P. and Goodier, T.N. (1970), Theory of Elasticity, 3rd McGraw-Hill Book Co., N.Y.
- Wang, X. and Shen, Y.P. (2002), "The general solution of three-dimensional problems in magneto-electro-elastic media", Int. J. Eng. Sci., 40, 1069-1080. https://doi.org/10.1016/S0020-7225(02)00006-X
- Wang, X. and Shen, Y.P. (2003), "Inclusion of arbitrary shape in magneto-electro-elastic composite materials", Int. J. Eng. Sci., 41, 85-102. https://doi.org/10.1016/S0020-7225(02)00110-6
Cited by
- Free vibration response of two-dimensional magneto-electro-elastic laminated plates vol.292, pp.3-5, 2006, https://doi.org/10.1016/j.jsv.2005.08.004
- Simplified Gurtin-type generalized variational principles for fully dynamic magneto-electro-elasticity with geometrical nonlinearity vol.47, pp.22-23, 2010, https://doi.org/10.1016/j.ijsolstr.2010.07.011
- A one-dimensional model for dynamic analysis of generally layered magneto-electro-elastic beams vol.332, pp.2, 2013, https://doi.org/10.1016/j.jsv.2012.09.004
- Steady-state analysis of a three-layered electro-magneto-elastic strip in a thermal environment vol.16, pp.2, 2007, https://doi.org/10.1088/0964-1726/16/2/006
- Harmonic Response of Three-phase Magneto-electro-elastic Beam Under Mechanical, Electrical and Magnetic Environment vol.20, pp.10, 2009, https://doi.org/10.1177/1045389X09103307
- Studies on Magnetoelectric Effect for Magneto‐Electro‐Elastic Cylinder using Finite Element Method vol.5, pp.3, 2009, https://doi.org/10.1163/157361109789016970
- On the dualism of voltage oscillations and kinematical variables of a 1D-beam piezofilm vol.127, 2015, https://doi.org/10.1016/j.compstruct.2015.03.053
- A beam finite element for magneto-electro-elastic multilayered composite structures vol.94, pp.12, 2012, https://doi.org/10.1016/j.compstruct.2012.06.011
- Free vibration analysis of magneto-electro-elastic microbeams subjected to magneto-electric loads vol.75, 2016, https://doi.org/10.1016/j.physe.2015.09.019
- Behaviour of magneto-electro-elastic sensors under transient mechanical loading vol.150, pp.1, 2009, https://doi.org/10.1016/j.sna.2008.11.035
- Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.279
- Two-dimensional analysis of simply supported piezoelectric beams with variable thickness vol.35, pp.9, 2011, https://doi.org/10.1016/j.apm.2011.03.012
- Free vibration behaviour of multiphase and layered magneto-electro-elastic beam vol.299, pp.1-2, 2007, https://doi.org/10.1016/j.jsv.2006.06.044
- On the fundamental equations of electromagnetoelastic media in variational form with an application to shell/laminae equations vol.47, pp.3-4, 2010, https://doi.org/10.1016/j.ijsolstr.2009.10.014
- Free vibrations of simply supported layered and multiphase magneto-electro-elastic cylindrical shells vol.15, pp.2, 2006, https://doi.org/10.1088/0964-1726/15/2/027
- Decay rate of saint-venant end effects for plane deformations of piezoelectric-piezomagnetic sandwich structures vol.23, pp.5, 2010, https://doi.org/10.1016/S0894-9166(10)60043-2
- Magnetic field effects on dynamic behavior of inhomogeneous thermo-piezo-electrically actuated nanoplates vol.39, pp.6, 2017, https://doi.org/10.1007/s40430-016-0646-z
- Influence of neutral surface position on dynamic characteristics of in-homogeneous piezo-magnetically actuated nanoscale plates 2017, https://doi.org/10.1177/0954406217728977
- Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams vol.131, pp.7, 2016, https://doi.org/10.1140/epjp/i2016-16238-8
- Effect of Displacement Current in Magneto-Electro-Elastic 3D Beam Subjected to Dynamic Loading vol.20, pp.3, 2013, https://doi.org/10.1080/15376494.2011.584145
- Green's functions for two-phase transversely isotropic magneto-electro-elastic media vol.29, pp.6, 2005, https://doi.org/10.1016/j.enganabound.2004.12.010
- Optimization of magneto-electro-elastic composite structures using differential evolution vol.107, 2014, https://doi.org/10.1016/j.compstruct.2013.08.005
- Buckling Analysis of Smart Size-Dependent Higher Order Magneto-Electro-Thermo-Elastic Functionally Graded Nanosize Beams vol.33, pp.01, 2017, https://doi.org/10.1017/jmech.2016.46
- Dynamic modeling of a thermo–piezo-electrically actuated nanosize beam subjected to a magnetic field vol.122, pp.4, 2016, https://doi.org/10.1007/s00339-016-0001-3
- Virtual boundary element-integral collocation method for the plane magnetoelectroelastic solids vol.30, pp.8, 2006, https://doi.org/10.1016/j.enganabound.2006.03.004
- Analytical solution for functionally graded magneto-electro-elastic plane beams vol.45, pp.2-8, 2007, https://doi.org/10.1016/j.ijengsci.2007.03.005
- Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading vol.29, pp.3, 2010, https://doi.org/10.1016/j.euromechsol.2009.12.002
- Discrete Layer Solution to Free Vibrations of Functionally Graded Magneto-Electro-Elastic Plates vol.13, pp.3, 2006, https://doi.org/10.1080/15376490600582750
- Free Vibration Analysis of Smart Porous Plates Subjected to Various Physical Fields Considering Neutral Surface Position vol.42, pp.5, 2017, https://doi.org/10.1007/s13369-016-2348-3
- Transient Dynamic Response of Cantilever Magneto-Electro-Elastic Beam Using Finite Elements vol.10, pp.3, 2009, https://doi.org/10.1080/15502280902797207
- Virtual boundary element-equivalent collocation method for the plane magnetoelectroelastic solids vol.22, pp.1, 2006, https://doi.org/10.12989/sem.2006.22.1.001
- An inhomogeneous cell-based smoothed finite element method for the nonlinear transient response of functionally graded magneto-electro-elastic structures with damping factors pp.1530-8138, 2018, https://doi.org/10.1177/1045389X18812712
- An Efficient Cell-Based Smoothed Finite Element Method for Free Vibrations of Magneto-Electro-Elastic Beams pp.1793-6969, 2020, https://doi.org/10.1142/S0219876219500014
- Closed-form solutions for vibrations of a magneto-electro-elastic beam with variable cross section by means of Green’s functions pp.1530-8138, 2018, https://doi.org/10.1177/1045389X18803456
- An effective cell-based smoothed finite element model for the transient responses of magneto-electro-elastic structures vol.29, pp.14, 2018, https://doi.org/10.1177/1045389X18781258
- Coupling magneto-electro-elastic cell-based smoothed radial point interpolation method for static and dynamic characterization of MEE structures pp.1619-6937, 2019, https://doi.org/10.1007/s00707-018-2351-8
- Analytical solutions for density functionally gradient magneto-electro-elastic cantilever beams vol.3, pp.2, 2007, https://doi.org/10.12989/sss.2007.3.2.173
- Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.281
- Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate vol.21, pp.4, 2004, https://doi.org/10.12989/sss.2018.21.4.493
- Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment vol.8, pp.1, 2004, https://doi.org/10.12989/anr.2020.8.1.083
- On the static analysis of inhomogeneous magneto-electro-elastic plates in thermal environment via element-free Galerkin method vol.134, pp.None, 2004, https://doi.org/10.1016/j.enganabound.2021.11.002