DOI QR코드

DOI QR Code

Solids 3-D with bounded tensile strength under the action of thermal strains. Theoretical aspects and numerical procedures

  • Received : 2003.04.13
  • Accepted : 2004.02.16
  • Published : 2004.07.25

Abstract

This paper is devoted to illustrate some numerical procedures to solve the boundary equilibrium problems of three-dimensional solids that are subjected to thermal strains. The constitutive equations take into account the bounded tensile strength of the material and they are presented in the framework of non-linear elasticity and small strains. The associated equilibrium problem is solved numerically by means of the finite element method and the numerical techniques, i.e. the Newton-Raphson method and the secant method, are revised in order to assure the solution convergence of the discretized problem. Some numerical examples are illustrated.

Keywords

References

  1. Alfano, G., Rosati, L. and Valoroso, N. (2000), "A numerical strategy for finite element analysis of no-tension materials", Int. J. Numer. Meth. Eng., 48, 317-350. https://doi.org/10.1002/(SICI)1097-0207(20000530)48:3<317::AID-NME868>3.0.CO;2-C
  2. Curnier, A., He, Q. and Zysset, P. (1995), "Conewise linear elastic materials", J. Elasticity, 37, 1-38. https://doi.org/10.1007/BF00043417
  3. Del Piero, G. (1989), "Constitutive equation and compatibility of the external loads for linear elastic masonrylike materials", Meccanica, 24, 150-162. https://doi.org/10.1007/BF01559418
  4. Exadaktylos, G.E., Vardoulakis, I. and Kourkoulis, S.K. (2001), "Influence of nonlinearity and double elasticity on flexure of rock beams - I Technical Theory", Int. J. Solids Struct., 39, 4091-4117.
  5. Green, A.E. and Mkrtichian, J.Z. (1977), "Elastic solids with different moduli in tension and compression", J. Elasticity, 7, 369-386. https://doi.org/10.1007/BF00041729
  6. Lucchesi, M., Padovani, C. and Pagni, A. (1994), "A numerical method for solving equilibrium problems of masonry-like solids", Meccanica, 29, 109-123. https://doi.org/10.1007/BF01007496
  7. Lucchesi, M., Padovani, C. and Pasquinelli, G. (1995), "On the numerical solution of equilibrium problems for elastic solids with bounded tensile strength", Comput. Meth. Appl. Mech. Eng., 127, 37-56. https://doi.org/10.1016/0045-7825(95)00816-4
  8. Lucchesi, M., Padovani, C. and Zani, N. (1996), "Masonry-like solids with bounded compressive strength", Int. J. Solids Struct., 33, 1961-1994. https://doi.org/10.1016/0020-7683(95)00143-3
  9. Lucchesi, M., Padovani, C. and Pasquinelli, G. (2000), "Thermodynamics of no-tension materials", Int. J. Solids Struct., 37, 6581-6604. https://doi.org/10.1016/S0020-7683(99)00204-8
  10. Ogden, R.W. (1997), "Non-linear elastic deformations", Dover Publications, Inc., Mineola, New York.
  11. Padovani, C., Pasquinelli, G. and Zani, N. (2000), "A numerical method for solving equilibrium problems of notension solids subjected to thermal loads", Comput. Meth. Appl. Mech. Eng., 190, 55-73. https://doi.org/10.1016/S0045-7825(99)00346-1
  12. Padovani, C. (2000), "On a class of non-linear elastic materials", Int. J. Solids Struct., 37, 7787-7807. https://doi.org/10.1016/S0020-7683(99)00307-8
  13. Pimpinelli, G. (2003), "On an improved numerical method to solve the equilibrium problems of solids with bounded tensile strength that are subjected to thermal strain", Struct. Eng. Mech., 15, 395-414. https://doi.org/10.12989/sem.2003.15.4.395
  14. Romano, G. and Sacco, E. (1984), "No-tension materials: constitutive equations and structural analysis", Atti dellI'stituto di Scienza delle Costruzioni, Internal Report no. 350 (in italian)
  15. Sacco, E. (1990), "Modeling and analysis of structures made of no-tension material", Atti dell'Accademia Nazionale dei Lincei, 9, 235-258 (in italian)
  16. Simo, J.C. and Rifai, M.S. (1990), "A class of mixed assumed strain methods and the method of incompatible modes", Int. J. Numer. Meth. Eng., 29, 1595-1638. https://doi.org/10.1002/nme.1620290802
  17. Wilson, E.L., Taylor, R.L., Doherty, W.P. and Ghaboussy, J. (1973), "Incompatible displacement models", In: Fenves SJ, al., editors. Numerical and Computer Models in Structural Mechanics. New York: Academic Press.