References
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element free Galerkin methods", Int. J. Numer. Meth. Eng., 37,229-256. https://doi.org/10.1002/nme.1620370205
- Cheng, M. and Liu, G.R. (2002), "A novel finite point method for flow simulation", Int. J. Numer. Meth. Fluid,39(12), 1161-1178. https://doi.org/10.1002/fld.365
- Cheng, J.Q., Li, H., Lam, K.Y., Ng, T.Y. and Yew, Y.K. (2002), "A new hybrid meshless-differential orderreduction (hM-DOR) method for deformation control of smart circular plate by distributed sensors/actuators",Advances in Meshfree and X-FEM Methods, Liu GR Editor, World Scientific Singapore, 49-54.
- Duarte, C.A. and Oden, J.T. (1996), "An h-p adaptive method using clouds", Comput. Meth. Appl. Mech. Eng.,139, 237-262. https://doi.org/10.1016/S0045-7825(96)01085-7
- Gingold, R.A. and Moraghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and applications to nonsphericalstars", Monthly Notices of the Astronomical Society, 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
- Gosz, J. and Liu, W.K. (1996), "Admissible approximations for essential boundary conditions in the reproducingkernel particle method", Comput. Mech., 19, 120-135. https://doi.org/10.1007/BF02824850
- Gunther, F.C. and Liu, W.K. (1998), "Implementation of boundary conditions for meshless methods", Comput.Meth. Appl. Mech. Eng., 63, 205-230.
- Hegen, D. (1996), "Element-free Galerkin methods in combination with finite element approaches", Comput.Meth. Appl. Mech. Eng., 135, 143-166. https://doi.org/10.1016/0045-7825(96)00994-2
- Krongauz, Y. and Belytschko, T. (1996), "Enforcement of essential boundary conditions in meshlessapproximation using finite elements", Comput. Meth. Appl. Mech. Eng., 131, 133-145. https://doi.org/10.1016/0045-7825(95)00954-X
- Liszka, T.J., Duarte, C.A.M. and Tworzydlo, W.W. (1996), "hp-meshless cloud method", Comput. Meth. Appl.Mech. Eng., 139, 263-288. https://doi.org/10.1016/S0045-7825(96)01086-9
- Liu, G.R. (2002), Mesh Free Methods - Moving Beyond the Finite Element Method, CRC Press.
- Liu, G.R. and Wu, T.Y. (2001), "Application of generalized differential quadrature rule in Blasius and Onsagerequation", Int. J. Numer. Meth. Eng., 52(9), 1013-1027. https://doi.org/10.1002/nme.251
- Liu, W.K., Chen, Y., Chang, C.T. and Belytschko, T. (1996), "Advances in multiple scale kernel particlemethods", Comput. Mech., 18, 73-111. https://doi.org/10.1007/BF00350529
- Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Meth. Eng., 20,1081-1106. https://doi.org/10.1002/fld.1650200824
- Liu, W.K., Jun, S., Li, S., Adde, J. and Belytschko, T. (1995), "Reproducing kernel particle methods forstructural dynamics", Int. J. Numer. Meth. Eng., 38, 1665-1679.
- Lu, Y.Y., Belytschko, T. and Gu, L. (1994), "A new implementation of the element free Galerkin method",Comput. Meth. Appl. Mech. Eng., 113, 397-414. https://doi.org/10.1016/0045-7825(94)90056-6
- Mukherjee, Y.X. and Mukherjee, S. (1997), "On boundary conditions in the element free Galerkin method",Comput. Mech., 19, 267-270.
- Ng, T.Y., Li, H., Cheng, J.Q. and Lam, K.Y. (2003), "A new hybrid meshless-differential order reduction (hMDOR)method with applications to shape control of smart structures via distributed sensors/actuators", Eng.Struct., 25(2), 141-154. https://doi.org/10.1016/S0141-0296(02)00116-5
- Onate, E., Idelsohn, S., Zienkiewicz, O.C. and Taylor, R.L. (1990), "A finite point method in computationalmechanics: applications to convective transport and fluid flow", Int. J. Numer. Meth. Eng., 39, 3839-3866. https://doi.org/10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
- Shu, C. (2000), Differential Quadrature and Its Application in Engineering, Springer, Great Britain.
- Tarter, M.E. and Lock, M.D. (1994), Model-free Curve Estimation, Chapman & Hall, New York.
- Zhu, T. and Atluri, S.N. (1998), "Modified collocation method and a penalty formulation for enforcing theessential boundary conditions in the element free Galerkin method", Comput. Mech., 21, 211-222. https://doi.org/10.1007/s004660050296
- Zong, Z. and Lam, K.Y. (2002), "A localized differential quadrature (LDQ) method and its application to the 2Dwave equation", Comput. Mech., 29, 382-391. https://doi.org/10.1007/s00466-002-0349-4
Cited by
- Micromechanical failure analysis of composite materials subjected to biaxial and off-axis loading vol.62, pp.1, 2017, https://doi.org/10.12989/sem.2017.62.1.043