참고문헌
- Baum, E.B. and Haussler, D. (1989), "What size net gives valid generalization?", Neural Computation, 1, 151-160. https://doi.org/10.1162/neco.1989.1.1.151
- Elkordy, M.F., Chang, K.C. and Lee, G.C. (1993), "Neural networks trained by analytically simulated damagedstates", J. Computing in Civil Engng., ASCE, 7, 130-145. https://doi.org/10.1061/(ASCE)0887-3801(1993)7:2(130)
- Ni, Y.Q., Zhou, X.T., Ko, J.M. and Wang, B.S. (2000), "Vibration-based damage localization in Ting Kau Bridgeusing probabilistic neural network", Advances in Structural Dynamics, Elsevier Science Ltd., Oxford, UK, 2, 1069-1076, Proc. of the Int. Conf. on Advances in Structural Dynamics.
- Pandey, P.C. and Barai, S.V. (1995), "Multilayer perceptron in damage detection of bridge strucutures", Comput.Struct., 54, 597-608. https://doi.org/10.1016/0045-7949(94)00377-F
- Specht, D.F. (1990), "Probabilistic neural networks", Neural Networks 3, 109-118. https://doi.org/10.1016/0893-6080(90)90049-Q
- Szewczyk, Z.P. and Hajela, P. (1992), "Neural networks based damage detection in structures", Technical Report,RPI, Troy.
- Wasserman, P.D., Advanced Methods in Neural Computing, Van Nostrand Reinhold, New York.
- Wu, X., Ghaboussi, J. and Garrett, J.H. (1992), "Use of neural networks in detection of structural damage",Comput. Struct., 42, 649-659. https://doi.org/10.1016/0045-7949(92)90132-J
- Yun, Chung-Bang and Bahng, Eun Young (2000), "Substructural identification using neural networks", Comput.Struct., 77, 41-52. https://doi.org/10.1016/S0045-7949(99)00199-6
피인용 문헌
- Neural network for bending moment in continuous composite beams considering cracking and time effects in concrete vol.29, pp.9, 2007, https://doi.org/10.1016/j.engstruct.2006.11.009
- Study of the structural damage identification method based on multi-mode information fusion vol.31, pp.3, 2009, https://doi.org/10.12989/sem.2009.31.3.333
- Damage detection in truss structures using a flexibility based approach with noise influence consideration vol.27, pp.5, 2007, https://doi.org/10.12989/sem.2007.27.5.625
- Design forces for groups of six cylindrical silos by artificial neural network modelling vol.165, pp.10, 2012, https://doi.org/10.1680/stbu.10.00049
- Crack identification in short shafts using wavelet-based element and neural networks vol.33, pp.5, 2009, https://doi.org/10.12989/sem.2009.33.5.543
- Eigen-Level Data Fusion Model by Integrating Rough Set and Probabilistic Neural Network for Structural Damage Detection vol.14, pp.2, 2011, https://doi.org/10.1260/1369-4332.14.2.333
- Two-step approaches for effective bridge health monitoring vol.23, pp.1, 2006, https://doi.org/10.12989/sem.2006.23.1.075
- A Revised Counter-Propagation Network Model Integrating Rough Set for Structural Damage Detection vol.9, pp.11, 2013, https://doi.org/10.1155/2013/850712
- A new statistical moment-based structural damage detection method vol.30, pp.4, 2004, https://doi.org/10.12989/sem.2008.30.4.445
- Neural networks for inelastic mid-span deflections in continuous composite beams vol.36, pp.2, 2004, https://doi.org/10.12989/sem.2010.36.2.165
- Prediction of moments in composite frames considering cracking and time effects using neural network models vol.39, pp.2, 2004, https://doi.org/10.12989/sem.2011.39.2.267
- Hierarchical neural network for damage detection using modal parameters vol.70, pp.4, 2004, https://doi.org/10.12989/sem.2019.70.4.457
- Neural networks for the rapid seismic assessment of existing moment-frame RC buildings vol.67, pp.None, 2004, https://doi.org/10.1016/j.ijdrr.2021.102677