DOI QR코드

DOI QR Code

On magnetostrictive materials and their use in adaptive structures

  • Dapino, Marcelo J. (Department of Mechanical Engineering, The Ohio State University)
  • 투고 : 2002.10.22
  • 심사 : 2003.08.30
  • 발행 : 2004.03.25

초록

Magnetostrictive materials are routinely employed as actuator and sensor elements in a wide variety of noise and vibration control problems. In infrastructural applications, other technologies such as hydraulic actuation, piezoelectric materials and more recently, magnetorheological fluids, are being favored for actuation and sensing purposes. These technologies have reached a degree of technical maturity and in some cases, cost effectiveness, which justify their broad use in infrastructural applications. Advanced civil structures present new challenges in the areas of condition monitoring and repair, reliability, and high-authority actuation which motivate the need to explore new methods and materials recently developed in the areas of materials science and transducer design. This paper provides an overview of a class of materials that because of the large force, displacement, and energy conversion effciency that it can provide is being considered in a growing number of quasistatic and dynamic applications. Since magnetostriction involves a bidirectional energy exchange between magnetic and elastic states, magnetostrictive materials provide mechanisms both for actuation and sensing. This paper provides an overview of materials, methods and applications with the goal to inspire novel solutions based on magnetostrictive materials for the design and control of advanced infrastructural systems.

키워드

참고문헌

  1. Agayan, V. (1996), "Thermodynamic model for ideal magnetostriction", Physica Scripta, 54, 514-521. https://doi.org/10.1088/0031-8949/54/5/011
  2. Akuta, T. (1992), "Rotational type actuators with Terfenol-D rods", In Proc. 3rd. Int. Conf. New Actuators, 244-248, Bremen, Germany. VDI-VDE.
  3. Anjanappa, M. and Wu, Y. (1997), "Magnetostrictive particulate actuators: configuration, modeling andcharacterization", Smart Mater. Struct., 6, 393-402. https://doi.org/10.1088/0964-1726/6/4/002
  4. Berlincourt, D.A., Curran, D.R. and Jaffe, H. (1964), "Piezoelectric piezomagnetic materials and their function intransducers", In Physical Acoustics, Principles and Methods, 1, Part A. Ed. W.P. Mason. Academic Press,New York.
  5. Body, C., Reyne, G. and Meunier, G. (1997), "Nonlinear finite element modelling of magneto-mechanical phenomenonin giant magnetostrictive thin films", IEEE Trans. Magn., 33(2), 1620-1623, March. https://doi.org/10.1109/20.582579
  6. Bozorth, R.M. (1968), Ferromagnetism. D. Van Nostrand, Inc..
  7. Brown, W.F. (1966), Magnetoelastic Interactions. Springer-Verlag, Berlin.
  8. Butler, J.L., Butler, S.C. and Butler, A.L. (1993), "Hybrid magnetostrictive/piezoelectric tonpilz transducer", J.Acoust. Soc. Am., 94, 636-641. https://doi.org/10.1121/1.406879
  9. Cady, W.C. (1964), Piezoelectricity, an Introduction to the Theory and Applications of Electromechanical Phenomenain Crystals, Dover Publications, Inc. New York.
  10. Calkins, F.T., Smith, R.C. and Flatau, A.B. (2000), "An energy-based hysteresis model for magnetostrictivetransducers", IEEE Trans. Magn., 36(2), 429-439, April. https://doi.org/10.1109/20.825804
  11. Calkins, F.T., Dapino, M.J. and Flatau, A.B. (1997), "Effect of prestress on the dynamic performance of aTerfenol-D transducer", Proc. of SPIE Smart Structures and Materials 1997, 3041, 293-304, San Diego, CA,March.
  12. Calkins, F.T. (1997), "Design, analysis and modeling of giant magnetostrictive transducers", PhD dissertation,Iowa State University, Ames, Iowa.
  13. Calkins, F.T. and Flatau, A.B. (1996), "Transducer based measurements of Terfenol-D material properties", InProc. of SPIE Smart Structures and Materials 1996, 2717, 709-719, San Diego, CA, March.
  14. Cedell, T. (1995), "Magnetostrictive materials and selected applications, magnetoelastically induced vibrations inmanufacturing processes", PhD thesis, Lund University, Lund, Sweden, 1995. LUTMDN/(TMMV-1021)/1-222/(1995).
  15. Chen, W., Frank, J., Koopmann, G.H. and Lesieutre, G.A. (1999), "Design and performance of a high forcepiezoelectric inchworm motor", In Proc. of SPIE Smart Structures and Materials 1999, Newport Beach, CA,March.
  16. Chikazumi, S. (1984), Physics of Magnetism. R.E. Krieger Publishing, Malabar, FL.
  17. Chopra, I. (2002), "Review of state of the art of smart structures and integrated systems", AIAA J., 40(11), 2145-2187, November. https://doi.org/10.2514/2.1561
  18. Chung, R., Weber, R. and Jiles, D.C. (1991), "A Terfenol based magnetostrictive diode laser magnetometer",IEEE Trans. Magn., 27(6), 5358-5360. https://doi.org/10.1109/20.278838
  19. Claeyssen, F., Lhermet, N. and Letty, R.L. (1996), "Design and construction of a resonant magnetostrictivemotor", IEEE Trans. Magn., 32(5), 4749-4751. https://doi.org/10.1109/20.539139
  20. Clark, A.E., Teter, J.P., Wun-Fogle, M., Moffett, M. and Lindberg, J. (1990), "Magnetomechanical coupling in Bridgman-grown $Tb_{0.3}Dy_{0.7}Fe_{1.9}$ at high drive levels", J. Appl. Phys., 67(9), May.
  21. Clark, A.E. (1980), In Ferromagnetic Materials, 1, Ch. 7, 531-589. Ed. E.P. Wohlfarth, North HollandPublishing, Co., Amsterdam.
  22. Clark, A.E., Savage, H.T. and Spano, M.L. (1984), "Effect of stress on the magnetostriction and magnetization ofsingle crystal $Tb_{0.27}Dy_{0.73}Fe_{2}$", IEEE Trans. Magn., MAG-20(5).
  23. Clephas, B. and Janocha, H. (1997), "New linear motor with hybrid actuator", In Proc. of SPIE Smart Structuresand Materials 1997, 3041, 316-327, San Diego, CA, March.
  24. Cullity, B.D. (1972), Introduction to Magnetic Materials. Addison-Wesley, Reading, MA.
  25. Dandridge, A., Koo, K.P., Bucjolts, F. and Tveten, A.B. (1986), "Stability of a fiber-optic magnetometer", IEEETrans. Magn., MAG-22, 141.
  26. Dapino, M.J., Calkins, F.T., Smith, R.C. and Flatau, A.B. (2002), "A coupled magnetomechanical model formagnetostrictive transducers and its application to Villari-effect sensors", J. Intelligent Material Systems andStructures, 13(11), 737-748, November 01. https://doi.org/10.1177/1045389X02013011005
  27. Dapino, M.J., Smith, R.C. and Flatau, A.B. (2000), "Structural-magnetic strain model for magnetostrictivetransducers", IEEE Trans. Magn., 36(3), 545-556. https://doi.org/10.1109/20.846217
  28. Dapino, M.J., Smith, R.C., Faidley, L.E. and Flatau, A.B. (2000), "A coupled structural-magnetic strain andstress model for magnetostrictive transducers", J. Intell. Mater. Syst. and Struct., 11(2), 135-152, February. https://doi.org/10.1106/MJ6A-FBP9-9M61-0E1F
  29. Dapino, M.J., Calkins, F.T. and Flatau, A.B. (1999), "Magnetostrictive devices". In 22nd. Encyclopedia ofElectrical and Electronics Engineering, 12, 278-305. Ed. J.G. Webster, John Wiley & Sons, Inc.
  30. Dapino, M.J., Smith, R.C. and Flatau, A.B. (2000), "A model for the DE effect in magnetostrictive transducers",In Proc. SPIE Smart Structures and Materials 2000, 3985, 174-185, Newport Beach, CA, 6-9 March.
  31. Dapino, M.J., Flatau, A.B. and Calkins, F.T. (1997), "Statistical analysis of Terfenol-D material properties", InProc. of SPIE Smart Structures and Materials 1997, 3041, 256-267, San Diego, CA, March.
  32. Dapino, M.J., Calkins, F.T., Hall, D.L. and Flatau, A.B. (1996), "Measured Terfenol-D material properties undervaried operating conditions", Proc. of SPIE Smart Structures and Materials 1996, 2717, 697-708, San Diego,CA, February.
  33. Duenas, T.A., Hsu, L. and Carman, G.P. (1996), "Magnetostrictive composite material systems analytical/experimental", In Adv. Smart Materials Fundamentals and Applications, Boston, MA.
  34. Engdahl, G. (Ed.). (2000), Handbook of Giant Magnetostrictive Materials. Academic Press, San Diego, CA.
  35. Flatau, A.B., Dapino, M.J. and Calkins, F.T. (1998), "High-bandwidth tunability in a smart passive vibrationabsorber", In Proc. of SPIE Smart Structures and Materials, 3327, 463-473, San Diego, CA, March 1998.
  36. Flatau, A.B., Pascual, F., Dapino, M.J. and Calkins, F.T. (1996), "Material characterization of ETREMATerfenol-D", final report, CATD-IPIRT Contract #95-05, October.
  37. Frederick, J.R. (1965), Ultrasonic Engineering. Wiley, New York.
  38. Garg, D.P., Zikry, M.A., Anderson, G.L. and Stepp, D. (2002), "Health monitoring and reliabiltiy of adaptiveheterogenous structures", Structural Healt Monitoring, 1(1), 23-39. https://doi.org/10.1177/147592170200100103
  39. Garshelis, I.J. (1992), "A torque transducer utilizing a circularly polarized ring", IEEE Trans. Magn., 28(5),2202-2204, September. https://doi.org/10.1109/20.179443
  40. Goldie, J.H., Gerver, M.J., Kiley, J. and Swenbeck, J.R. (1998), "Observations and theory of Terfenol-Dinchworm motors", In Proc. of SPIE Smart Structures and Materials 1998, 3329, 780-785, San Diego, CA,March.
  41. Hall, D.L. (1994), "Dynamics and vibrations of magnetostrictive transducers", PhD dissertation, Iowa StateUniversity, Ames, Iowa.
  42. Hansen, T.T. (1996), "Magnetostrictive materials and ultrasonics", Technical report, Chemtech, Dec. 1996, 56-59.
  43. Hunt, F.V. (1982), Electroacoustics: The Analysis of Transduction and Its Historical Background. AmericanInstitute of Physics for the Acoustical Society of America.
  44. James, R.D. and Kinderlehrer, D. (1993), "Theory of magnetostriction with applications to $Tb_{x}Dy_{1-x}Fe_{2}$",Philosophical Magazine B, 68(2), 237-274. https://doi.org/10.1080/01418639308226405
  45. Jiles, D.C. (1998), Introduction to Magnetism and Magnetic Materials. Chapman & Hall, London, Secondedition.
  46. Jiles, D.C. and Atherton, D.L. (1986), "Theory of ferromagnetic hysteresis", J. Magn. Magn. Mater., 61, 48-60. https://doi.org/10.1016/0304-8853(86)90066-1
  47. Jiles, D.C. (1995), "Theory of the magnetomechanical effect", J. Phys. D: Appl. Phys., 28, 1537-1546. https://doi.org/10.1088/0022-3727/28/8/001
  48. Jiles, D.C. (1994), Introduction to the Electronic Properties of Materials. Chapman & Hall, London.
  49. Jiles, D.C. and Atherton, D.L. (1986), "Theory of ferromagnetic hysteresis", J. Magn. Magn. Mater., 61, 48-60. https://doi.org/10.1016/0304-8853(86)90066-1
  50. Jiles, D.C. and Thoelke, J.B. (1994), "Theoretical modelling of the effects of anisotropy and stress on themagnetization and magnetostriction of $Tb_{0.3}Dy_{0.7}Fe_{2}$", J. Magn. Magn. Mater., 134, 143-160. https://doi.org/10.1016/0304-8853(94)90086-8
  51. Kellogg, R.A. and Flatau, A.B. (1999), "Blocked force investigation of a Terfenol-D transducer", In Proc. ofSPIE Smart Structures and Materials 1999, 3668, Newport Beach, CA, March.
  52. Kessler, M.K., Sottos, N.R. and White, S.R. (2003), "Self-healing structural composite materials", CompositesPart A: Applied Science and Manufacturing, 34(8), 743-753, August. https://doi.org/10.1016/S1359-835X(03)00138-6
  53. Kiesewetter, L. (1988), "The application of Terfenol in linear motors", In Proc. 2nd. Inter. Conf. GiantMagnetostrictive Alloys, Marbella, Spain, October 12-14.
  54. Kittel, C. (1949), "Physical theory of ferromagnetic domains", Rev. Mod. Phys., 21, 541-583. https://doi.org/10.1103/RevModPhys.21.541
  55. Lee, E.W. (1955), "Magnetostriction and magnetomechanical effects", Reports on Prog. in Phys., 18, 184-220. https://doi.org/10.1088/0034-4885/18/1/305
  56. Lee, E.W. and Bishop, J.E. (1966), "Magnetic behaviour of single-domain particles", Proc. Phys. Soc., 89, 661,London. https://doi.org/10.1088/0370-1328/89/3/320
  57. Lindgren, E.A., Poret, J.C., Whalen, J.J., Martin, L.P., Rosen, M., Wun-Fogle, M., Restorff, J.B., Clark, A.E. andLindberg, J.F. (1999), "Development of Terfenol-D transducer material", In U.S. Navy Workshop on AcousticTransduction Materials and Devices, State College, PA, 13-15 April.
  58. Mayergoyz, I.D. (1991), Mathematical Models of Hysteresis. Springer-Verlag, New York.
  59. Mermelstein, M.D. and Dandridge, A. (1987), "Low-frequency magnetic field detection with a magnetostrictiveamorphous metal ribbon", Appl. Phys. Lett., 51(7), 545-547. https://doi.org/10.1063/1.98394
  60. Miesner, J.E. and Teter, J.P. (1994), "Piezoelectric/magnetostrictive resonant inchworm motor", In Proc. of SPIESmart Structures and Materials 1994, 2190, 520-527, Orlando, FL.
  61. O'Handley, R.C. (1998), "Model for strain and magnetization in magnetic shape-memory alloys", J. Appl. Phys.,83(6), 3263-3270, March. https://doi.org/10.1063/1.367094
  62. Reimers, A. and Della Torre, E. (1999), "Fast Preisach based model for Terfenol-D", IEEE Trans. Magn., 35,1239-1242, May. https://doi.org/10.1109/20.767174
  63. Restorff, J.B., Wun-Fogle, M. and Clark, A.E. (1999), "Temperature and stress dependence of the magnetostrictionin ternary and quaternary Terfenol alloys", In U.S. Navy Workshop on Acoustic Transduction Materialsand Devices, State College, PA, 13-15 April.
  64. Restorff, J.B. (1994), "Magnetostrictive materials and devices", In Encyclopedia of Applied Physics, 9, 229-244.VCH Publishers, Inc..
  65. Restorff, J.B., Savage, H.T., Clark, A.E. and Wun-Fogle, M. (1990), "Preisach modeling of hysteresis inTerfenol-D", J. Appl. Phys., 67(9), 5016-5018. https://doi.org/10.1063/1.344708
  66. Robert, G., Damjanovic, D., Setter, N. and Turik, A.V. (2001), "Preisach modeling of piezoelectric nonlinearityin ferroelectric ceramics", J. Appl. Phys., 89(9), 5067-5074. https://doi.org/10.1063/1.1359166
  67. Roth, R.C. (1992), "The elastic wave motor-a versatile Terfenol driven, linear actuator with high force and greatprecision", In Proc. 3rd Int. Conf. New Actuators, 138-141, Bremen, Germany. AXON Tech..
  68. Sablik, M.J. and Jiles, D.C. (1988), "A model for hysteresis in magnetostriction", J. Appl. Phys., 64(10), 5402-5404, 1988. https://doi.org/10.1063/1.342383
  69. Sablik, M.J. and Jiles, D.C. (1993), "Coupled magnetoelastic theory of magnetic and magnetostrictivehysteresis", IEEE Trans. Magn., 29(3).
  70. Sasada, I., Suzuki, N., Sasaoka, T. and Toda, K. (1994), "In-process detection of torque on a drill using themagnetostrictive effect", IEEE Trans. Magn., 30(6), 4632-4635, November. https://doi.org/10.1109/20.334173
  71. Seekercher, J. and Hoffmann, B. (1990), "New magnetoelastic force sensor using amorphous alloys", SensorsActuators, A21-A23, 401-405.
  72. Smith, R.C. and Ounaies, Z. (2000), "A domain wall model for hysteresis in piezoelectric materials", CRSCTechnical Report CRSC-TR99-33 and J. of Intell. Mater. Syst. and Struct., in press.
  73. Smith, R.C. "Smart structures: model development and control applications", In Series on Applied andComputational Control, Signals and Circuits (ACCSC). Ed. Biswa Datta. Birkhauser. in press.
  74. Smith, R.C. and Zrostlik, R.L. (1999), "Inverse compensation for ferromagnetic hysteresis", In Proc. 1999 IEEEConf. on Decision and Control, Phoenix, AZ, December 7-10.
  75. Smith, R.C. (1998), "Hysteresis modeling in magnetostrictive materials via Preisach operators", J. Mathematical Systems, Estimation and Control, 8(2), 249-252.
  76. Steel, G.A. (1993), "A 2-khz magnetostrictive transducer", In Transducers for Sonics and Ultrasonics, 250-258,Lancaster, PA. Technomic, Inc..
  77. Stoner, E.C. and Wohlfarth, E.P. (1948), "A mechanism of magnetic hysteresis in heterogeneous alloys", Phil.Trans. Roy. Soc., A240, 599-642.
  78. Teter, J.P., Clark, A.E. and McMasters, O.D. (1987), "Anisotropic magnetostriction in $Tb_{0.27}Dy_{0.73}Fe_{1.95}$", J. Appl.Phys., 61, 3787-3789. https://doi.org/10.1063/1.338646
  79. E. du Trémolet de Lacheisserie (1993), Magnetostriction Theory and Applications of Magnetoelasticity. CRCPress, Inc., Boca Raton, FL.
  80. Uchida, H., Wada, M., Ichikawa, A., Matsumara, Y. and Uchida, H.H. (1996), "Effects of the preparation methodand condition on the magnetic and giant magnetostrictive properties of $(Tb, Dy)Fe_{2}$ thin films", In Proc.Actuator 96, 5th Intern. Conf. on New Actuators, 275-278, Bremen, Germany. VDI-VDE.
  81. Venkataraman, R., Dayawansa, W.P. and Krishnaprasad, P.S. (1998), "The hybrid motor prototype: design detailsand demonstration results", Technical report, CDCSS, University of Maryland, College Park, MD, 1998.CDCSS T.R. 98-2.
  82. Vranish, J.M., Naik, D.P., Restorff, J.B. and Teter, J.P. (1991), "Magnetostrictive direct drive rotary motordevelopment", IEEE Trans. Magn., 27, 5355-5357. https://doi.org/10.1109/20.278837
  83. Wun-Fogle, M., Savage, H.T. and Spano, M.L. (1989), "Enhancement of magnetostrictive effects for sensorapplications", J. Mater. Eng., 11(1), 103-107. https://doi.org/10.1007/BF02833760
  84. Yariv, A. and Windsor, H. (1980), "Proposal for detection of magnetic field through magnetostrictiveperturbation of optical fibers", Opt. Lett., 5, 87. https://doi.org/10.1364/OL.5.000087

피인용 문헌

  1. Guide to the Literature of Piezoelectricity and Pyroelectricity. 25 vol.330, pp.1, 2006, https://doi.org/10.1080/00150190600605684
  2. Stress-Strain Behavior of a Smart Magnetostrictive Actuator for a Bone Transport Device vol.2, pp.4, 2008, https://doi.org/10.1115/1.2997331
  3. Cytocompatibility evaluation of NiMnSn meta-magnetic shape memory alloys for biomedical applications vol.104, pp.5, 2016, https://doi.org/10.1002/jbm.b.33436
  4. Design of a Bone Transport Device Using Smart Material Actuators vol.131, pp.9, 2009, https://doi.org/10.1115/1.3160314
  5. Magnetostrictive vibration energy harvesting using strain energy method vol.81, 2015, https://doi.org/10.1016/j.energy.2014.12.065
  6. Incremental Magnetoelastic Deformations, with Application to Surface Instability vol.90, pp.1, 2008, https://doi.org/10.1007/s10659-007-9120-6
  7. Compact hybrid electrohydraulic actuators using smart materials: A review vol.23, pp.6, 2012, https://doi.org/10.1177/1045389X11418862
  8. A Homogenized Energy Model for the Direct Magnetomechanical Effect vol.42, pp.8, 2006, https://doi.org/10.1109/TMAG.2006.875705
  9. Effect of Cooling Rate on Crystal Orientation, and Magnetic and Magnetostrictive Properties of TbFe2-Based Alloy Treated in Semisolid State Under a High Magnetic Field vol.51, pp.5, 2015, https://doi.org/10.1109/TMAG.2014.2366728
  10. Evaluation of magnetostrictive composite coated fabric as a fragment barrier material vol.21, pp.10, 2012, https://doi.org/10.1088/0964-1726/21/10/105027
  11. Design, test and model of a hybrid magnetostrictive hydraulic actuator vol.18, pp.8, 2009, https://doi.org/10.1088/0964-1726/18/8/085019
  12. Coupled axisymmetric finite element model of a hydraulically amplified magnetostrictive actuator for active powertrain mounts vol.60, 2012, https://doi.org/10.1016/j.finel.2012.05.003
  13. Dependence of magnetic susceptibility on stress in textured polycrystalline Fe81.6Ga18.4 and Fe79.1Ga20.9 Galfenol alloys vol.96, pp.1, 2010, https://doi.org/10.1063/1.3280374
  14. A survey on hysteresis modeling, identification and control vol.49, pp.1-2, 2014, https://doi.org/10.1016/j.ymssp.2014.04.012
  15. Stress-dependent susceptibility of Galfenol and application to force sensing vol.108, pp.7, 2010, https://doi.org/10.1063/1.3486019
  16. Magnetic domain structure, crystal orientation, and magnetostriction of Tb 0.27 Dy 0.73 Fe 1.95 solidified in various high magnetic fields vol.401, 2016, https://doi.org/10.1016/j.jmmm.2015.10.127
  17. On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys vol.55, pp.13, 2007, https://doi.org/10.1016/j.actamat.2007.03.025
  18. Optimal Tracking Using Magnetostrictive Actuators Operating in Nonlinear and Hysteretic Regimes vol.131, pp.3, 2009, https://doi.org/10.1115/1.3072093
  19. Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks vol.82, 2017, https://doi.org/10.1016/j.ymssp.2016.05.021
  20. Major and minor stress-magnetization loops in textured polycrystalline Fe81.6Ga18.4 Galfenol vol.113, pp.2, 2013, https://doi.org/10.1063/1.4772722
  21. Design and characterization of a flextensional stage based on Terfenol-D actuator vol.15, pp.1, 2014, https://doi.org/10.1007/s12541-013-0316-3
  22. First Evidence of Surface SH-Wave Propagation in Cubic Piezomagnetics vol.02, pp.05, 2010, https://doi.org/10.4236/jemaa.2010.25037
  23. A homogenized energy model for the direct magnetomechanical effect vol.42, pp.8, 2004, https://doi.org/10.1109/tmag.2006.9099177
  24. Multiscale Approach for the Modeling of Chemo-Magneto-Thermo-Mechanical Couplings - Reversible Framework vol.941, pp.None, 2004, https://doi.org/10.4028/www.scientific.net/msf.941.2290
  25. Model of the Magnetostrictive Hysteresis Loop with Local Maximum vol.12, pp.1, 2004, https://doi.org/10.3390/ma12010105
  26. Adaptive control of normal load at the friction interface of bladed disks using giant magnetostrictive material vol.31, pp.8, 2004, https://doi.org/10.1177/1045389x20910269
  27. Giant reversible magnetostriction in a ferromagnet-polymer composite vol.128, pp.5, 2004, https://doi.org/10.1063/5.0018245
  28. Design and analysis of magnetostrictive sensors for wireless temperature sensing vol.92, pp.1, 2004, https://doi.org/10.1063/5.0035296
  29. Frequency response of a magnetostrictive wire-polymer composite vol.129, pp.20, 2004, https://doi.org/10.1063/5.0044563
  30. Wearable wireless power systems for ‘ME-BIT’ magnetoelectric-powered bio implants vol.18, pp.4, 2021, https://doi.org/10.1088/1741-2552/ac1178
  31. Nanocrystalline FeCr alloys synthesised by severe plastic deformation – A potential material for exchange bias and enhanced magnetostriction vol.534, pp.None, 2004, https://doi.org/10.1016/j.jmmm.2021.168017
  32. Modeling Magnetostrictive Transducers for Structural Health Monitoring: Ultrasonic Guided Wave Generation and Reception vol.21, pp.23, 2004, https://doi.org/10.3390/s21237971
  33. Evolution of nonlinear magneto-elastic constitutive laws in ferromagnetic materials: A comprehensive review vol.546, pp.None, 2004, https://doi.org/10.1016/j.jmmm.2021.168821