References
- Agayan, V. (1996), "Thermodynamic model for ideal magnetostriction", Physica Scripta, 54, 514-521. https://doi.org/10.1088/0031-8949/54/5/011
- Akuta, T. (1992), "Rotational type actuators with Terfenol-D rods", In Proc. 3rd. Int. Conf. New Actuators, 244-248, Bremen, Germany. VDI-VDE.
- Anjanappa, M. and Wu, Y. (1997), "Magnetostrictive particulate actuators: configuration, modeling andcharacterization", Smart Mater. Struct., 6, 393-402. https://doi.org/10.1088/0964-1726/6/4/002
- Berlincourt, D.A., Curran, D.R. and Jaffe, H. (1964), "Piezoelectric piezomagnetic materials and their function intransducers", In Physical Acoustics, Principles and Methods, 1, Part A. Ed. W.P. Mason. Academic Press,New York.
- Body, C., Reyne, G. and Meunier, G. (1997), "Nonlinear finite element modelling of magneto-mechanical phenomenonin giant magnetostrictive thin films", IEEE Trans. Magn., 33(2), 1620-1623, March. https://doi.org/10.1109/20.582579
- Bozorth, R.M. (1968), Ferromagnetism. D. Van Nostrand, Inc..
- Brown, W.F. (1966), Magnetoelastic Interactions. Springer-Verlag, Berlin.
- Butler, J.L., Butler, S.C. and Butler, A.L. (1993), "Hybrid magnetostrictive/piezoelectric tonpilz transducer", J.Acoust. Soc. Am., 94, 636-641. https://doi.org/10.1121/1.406879
- Cady, W.C. (1964), Piezoelectricity, an Introduction to the Theory and Applications of Electromechanical Phenomenain Crystals, Dover Publications, Inc. New York.
- Calkins, F.T., Smith, R.C. and Flatau, A.B. (2000), "An energy-based hysteresis model for magnetostrictivetransducers", IEEE Trans. Magn., 36(2), 429-439, April. https://doi.org/10.1109/20.825804
- Calkins, F.T., Dapino, M.J. and Flatau, A.B. (1997), "Effect of prestress on the dynamic performance of aTerfenol-D transducer", Proc. of SPIE Smart Structures and Materials 1997, 3041, 293-304, San Diego, CA,March.
- Calkins, F.T. (1997), "Design, analysis and modeling of giant magnetostrictive transducers", PhD dissertation,Iowa State University, Ames, Iowa.
- Calkins, F.T. and Flatau, A.B. (1996), "Transducer based measurements of Terfenol-D material properties", InProc. of SPIE Smart Structures and Materials 1996, 2717, 709-719, San Diego, CA, March.
- Cedell, T. (1995), "Magnetostrictive materials and selected applications, magnetoelastically induced vibrations inmanufacturing processes", PhD thesis, Lund University, Lund, Sweden, 1995. LUTMDN/(TMMV-1021)/1-222/(1995).
- Chen, W., Frank, J., Koopmann, G.H. and Lesieutre, G.A. (1999), "Design and performance of a high forcepiezoelectric inchworm motor", In Proc. of SPIE Smart Structures and Materials 1999, Newport Beach, CA,March.
- Chikazumi, S. (1984), Physics of Magnetism. R.E. Krieger Publishing, Malabar, FL.
- Chopra, I. (2002), "Review of state of the art of smart structures and integrated systems", AIAA J., 40(11), 2145-2187, November. https://doi.org/10.2514/2.1561
- Chung, R., Weber, R. and Jiles, D.C. (1991), "A Terfenol based magnetostrictive diode laser magnetometer",IEEE Trans. Magn., 27(6), 5358-5360. https://doi.org/10.1109/20.278838
- Claeyssen, F., Lhermet, N. and Letty, R.L. (1996), "Design and construction of a resonant magnetostrictivemotor", IEEE Trans. Magn., 32(5), 4749-4751. https://doi.org/10.1109/20.539139
-
Clark, A.E., Teter, J.P., Wun-Fogle, M., Moffett, M. and Lindberg, J. (1990), "Magnetomechanical coupling in Bridgman-grown
$Tb_{0.3}Dy_{0.7}Fe_{1.9}$ at high drive levels", J. Appl. Phys., 67(9), May. - Clark, A.E. (1980), In Ferromagnetic Materials, 1, Ch. 7, 531-589. Ed. E.P. Wohlfarth, North HollandPublishing, Co., Amsterdam.
-
Clark, A.E., Savage, H.T. and Spano, M.L. (1984), "Effect of stress on the magnetostriction and magnetization ofsingle crystal
$Tb_{0.27}Dy_{0.73}Fe_{2}$ ", IEEE Trans. Magn., MAG-20(5). - Clephas, B. and Janocha, H. (1997), "New linear motor with hybrid actuator", In Proc. of SPIE Smart Structuresand Materials 1997, 3041, 316-327, San Diego, CA, March.
- Cullity, B.D. (1972), Introduction to Magnetic Materials. Addison-Wesley, Reading, MA.
- Dandridge, A., Koo, K.P., Bucjolts, F. and Tveten, A.B. (1986), "Stability of a fiber-optic magnetometer", IEEETrans. Magn., MAG-22, 141.
- Dapino, M.J., Calkins, F.T., Smith, R.C. and Flatau, A.B. (2002), "A coupled magnetomechanical model formagnetostrictive transducers and its application to Villari-effect sensors", J. Intelligent Material Systems andStructures, 13(11), 737-748, November 01. https://doi.org/10.1177/1045389X02013011005
- Dapino, M.J., Smith, R.C. and Flatau, A.B. (2000), "Structural-magnetic strain model for magnetostrictivetransducers", IEEE Trans. Magn., 36(3), 545-556. https://doi.org/10.1109/20.846217
- Dapino, M.J., Smith, R.C., Faidley, L.E. and Flatau, A.B. (2000), "A coupled structural-magnetic strain andstress model for magnetostrictive transducers", J. Intell. Mater. Syst. and Struct., 11(2), 135-152, February. https://doi.org/10.1106/MJ6A-FBP9-9M61-0E1F
- Dapino, M.J., Calkins, F.T. and Flatau, A.B. (1999), "Magnetostrictive devices". In 22nd. Encyclopedia ofElectrical and Electronics Engineering, 12, 278-305. Ed. J.G. Webster, John Wiley & Sons, Inc.
- Dapino, M.J., Smith, R.C. and Flatau, A.B. (2000), "A model for the DE effect in magnetostrictive transducers",In Proc. SPIE Smart Structures and Materials 2000, 3985, 174-185, Newport Beach, CA, 6-9 March.
- Dapino, M.J., Flatau, A.B. and Calkins, F.T. (1997), "Statistical analysis of Terfenol-D material properties", InProc. of SPIE Smart Structures and Materials 1997, 3041, 256-267, San Diego, CA, March.
- Dapino, M.J., Calkins, F.T., Hall, D.L. and Flatau, A.B. (1996), "Measured Terfenol-D material properties undervaried operating conditions", Proc. of SPIE Smart Structures and Materials 1996, 2717, 697-708, San Diego,CA, February.
- Duenas, T.A., Hsu, L. and Carman, G.P. (1996), "Magnetostrictive composite material systems analytical/experimental", In Adv. Smart Materials Fundamentals and Applications, Boston, MA.
- Engdahl, G. (Ed.). (2000), Handbook of Giant Magnetostrictive Materials. Academic Press, San Diego, CA.
- Flatau, A.B., Dapino, M.J. and Calkins, F.T. (1998), "High-bandwidth tunability in a smart passive vibrationabsorber", In Proc. of SPIE Smart Structures and Materials, 3327, 463-473, San Diego, CA, March 1998.
- Flatau, A.B., Pascual, F., Dapino, M.J. and Calkins, F.T. (1996), "Material characterization of ETREMATerfenol-D", final report, CATD-IPIRT Contract #95-05, October.
- Frederick, J.R. (1965), Ultrasonic Engineering. Wiley, New York.
- Garg, D.P., Zikry, M.A., Anderson, G.L. and Stepp, D. (2002), "Health monitoring and reliabiltiy of adaptiveheterogenous structures", Structural Healt Monitoring, 1(1), 23-39. https://doi.org/10.1177/147592170200100103
- Garshelis, I.J. (1992), "A torque transducer utilizing a circularly polarized ring", IEEE Trans. Magn., 28(5),2202-2204, September. https://doi.org/10.1109/20.179443
- Goldie, J.H., Gerver, M.J., Kiley, J. and Swenbeck, J.R. (1998), "Observations and theory of Terfenol-Dinchworm motors", In Proc. of SPIE Smart Structures and Materials 1998, 3329, 780-785, San Diego, CA,March.
- Hall, D.L. (1994), "Dynamics and vibrations of magnetostrictive transducers", PhD dissertation, Iowa StateUniversity, Ames, Iowa.
- Hansen, T.T. (1996), "Magnetostrictive materials and ultrasonics", Technical report, Chemtech, Dec. 1996, 56-59.
- Hunt, F.V. (1982), Electroacoustics: The Analysis of Transduction and Its Historical Background. AmericanInstitute of Physics for the Acoustical Society of America.
-
James, R.D. and Kinderlehrer, D. (1993), "Theory of magnetostriction with applications to
$Tb_{x}Dy_{1-x}Fe_{2}$ ",Philosophical Magazine B, 68(2), 237-274. https://doi.org/10.1080/01418639308226405 - Jiles, D.C. (1998), Introduction to Magnetism and Magnetic Materials. Chapman & Hall, London, Secondedition.
- Jiles, D.C. and Atherton, D.L. (1986), "Theory of ferromagnetic hysteresis", J. Magn. Magn. Mater., 61, 48-60. https://doi.org/10.1016/0304-8853(86)90066-1
- Jiles, D.C. (1995), "Theory of the magnetomechanical effect", J. Phys. D: Appl. Phys., 28, 1537-1546. https://doi.org/10.1088/0022-3727/28/8/001
- Jiles, D.C. (1994), Introduction to the Electronic Properties of Materials. Chapman & Hall, London.
- Jiles, D.C. and Atherton, D.L. (1986), "Theory of ferromagnetic hysteresis", J. Magn. Magn. Mater., 61, 48-60. https://doi.org/10.1016/0304-8853(86)90066-1
-
Jiles, D.C. and Thoelke, J.B. (1994), "Theoretical modelling of the effects of anisotropy and stress on themagnetization and magnetostriction of
$Tb_{0.3}Dy_{0.7}Fe_{2}$ ", J. Magn. Magn. Mater., 134, 143-160. https://doi.org/10.1016/0304-8853(94)90086-8 - Kellogg, R.A. and Flatau, A.B. (1999), "Blocked force investigation of a Terfenol-D transducer", In Proc. ofSPIE Smart Structures and Materials 1999, 3668, Newport Beach, CA, March.
- Kessler, M.K., Sottos, N.R. and White, S.R. (2003), "Self-healing structural composite materials", CompositesPart A: Applied Science and Manufacturing, 34(8), 743-753, August. https://doi.org/10.1016/S1359-835X(03)00138-6
- Kiesewetter, L. (1988), "The application of Terfenol in linear motors", In Proc. 2nd. Inter. Conf. GiantMagnetostrictive Alloys, Marbella, Spain, October 12-14.
- Kittel, C. (1949), "Physical theory of ferromagnetic domains", Rev. Mod. Phys., 21, 541-583. https://doi.org/10.1103/RevModPhys.21.541
- Lee, E.W. (1955), "Magnetostriction and magnetomechanical effects", Reports on Prog. in Phys., 18, 184-220. https://doi.org/10.1088/0034-4885/18/1/305
- Lee, E.W. and Bishop, J.E. (1966), "Magnetic behaviour of single-domain particles", Proc. Phys. Soc., 89, 661,London. https://doi.org/10.1088/0370-1328/89/3/320
- Lindgren, E.A., Poret, J.C., Whalen, J.J., Martin, L.P., Rosen, M., Wun-Fogle, M., Restorff, J.B., Clark, A.E. andLindberg, J.F. (1999), "Development of Terfenol-D transducer material", In U.S. Navy Workshop on AcousticTransduction Materials and Devices, State College, PA, 13-15 April.
- Mayergoyz, I.D. (1991), Mathematical Models of Hysteresis. Springer-Verlag, New York.
- Mermelstein, M.D. and Dandridge, A. (1987), "Low-frequency magnetic field detection with a magnetostrictiveamorphous metal ribbon", Appl. Phys. Lett., 51(7), 545-547. https://doi.org/10.1063/1.98394
- Miesner, J.E. and Teter, J.P. (1994), "Piezoelectric/magnetostrictive resonant inchworm motor", In Proc. of SPIESmart Structures and Materials 1994, 2190, 520-527, Orlando, FL.
- O'Handley, R.C. (1998), "Model for strain and magnetization in magnetic shape-memory alloys", J. Appl. Phys.,83(6), 3263-3270, March. https://doi.org/10.1063/1.367094
- Reimers, A. and Della Torre, E. (1999), "Fast Preisach based model for Terfenol-D", IEEE Trans. Magn., 35,1239-1242, May. https://doi.org/10.1109/20.767174
- Restorff, J.B., Wun-Fogle, M. and Clark, A.E. (1999), "Temperature and stress dependence of the magnetostrictionin ternary and quaternary Terfenol alloys", In U.S. Navy Workshop on Acoustic Transduction Materialsand Devices, State College, PA, 13-15 April.
- Restorff, J.B. (1994), "Magnetostrictive materials and devices", In Encyclopedia of Applied Physics, 9, 229-244.VCH Publishers, Inc..
- Restorff, J.B., Savage, H.T., Clark, A.E. and Wun-Fogle, M. (1990), "Preisach modeling of hysteresis inTerfenol-D", J. Appl. Phys., 67(9), 5016-5018. https://doi.org/10.1063/1.344708
- Robert, G., Damjanovic, D., Setter, N. and Turik, A.V. (2001), "Preisach modeling of piezoelectric nonlinearityin ferroelectric ceramics", J. Appl. Phys., 89(9), 5067-5074. https://doi.org/10.1063/1.1359166
- Roth, R.C. (1992), "The elastic wave motor-a versatile Terfenol driven, linear actuator with high force and greatprecision", In Proc. 3rd Int. Conf. New Actuators, 138-141, Bremen, Germany. AXON Tech..
- Sablik, M.J. and Jiles, D.C. (1988), "A model for hysteresis in magnetostriction", J. Appl. Phys., 64(10), 5402-5404, 1988. https://doi.org/10.1063/1.342383
- Sablik, M.J. and Jiles, D.C. (1993), "Coupled magnetoelastic theory of magnetic and magnetostrictivehysteresis", IEEE Trans. Magn., 29(3).
- Sasada, I., Suzuki, N., Sasaoka, T. and Toda, K. (1994), "In-process detection of torque on a drill using themagnetostrictive effect", IEEE Trans. Magn., 30(6), 4632-4635, November. https://doi.org/10.1109/20.334173
- Seekercher, J. and Hoffmann, B. (1990), "New magnetoelastic force sensor using amorphous alloys", SensorsActuators, A21-A23, 401-405.
- Smith, R.C. and Ounaies, Z. (2000), "A domain wall model for hysteresis in piezoelectric materials", CRSCTechnical Report CRSC-TR99-33 and J. of Intell. Mater. Syst. and Struct., in press.
- Smith, R.C. "Smart structures: model development and control applications", In Series on Applied andComputational Control, Signals and Circuits (ACCSC). Ed. Biswa Datta. Birkhauser. in press.
- Smith, R.C. and Zrostlik, R.L. (1999), "Inverse compensation for ferromagnetic hysteresis", In Proc. 1999 IEEEConf. on Decision and Control, Phoenix, AZ, December 7-10.
- Smith, R.C. (1998), "Hysteresis modeling in magnetostrictive materials via Preisach operators", J. Mathematical Systems, Estimation and Control, 8(2), 249-252.
- Steel, G.A. (1993), "A 2-khz magnetostrictive transducer", In Transducers for Sonics and Ultrasonics, 250-258,Lancaster, PA. Technomic, Inc..
- Stoner, E.C. and Wohlfarth, E.P. (1948), "A mechanism of magnetic hysteresis in heterogeneous alloys", Phil.Trans. Roy. Soc., A240, 599-642.
-
Teter, J.P., Clark, A.E. and McMasters, O.D. (1987), "Anisotropic magnetostriction in
$Tb_{0.27}Dy_{0.73}Fe_{1.95}$ ", J. Appl.Phys., 61, 3787-3789. https://doi.org/10.1063/1.338646 - E. du Trémolet de Lacheisserie (1993), Magnetostriction Theory and Applications of Magnetoelasticity. CRCPress, Inc., Boca Raton, FL.
-
Uchida, H., Wada, M., Ichikawa, A., Matsumara, Y. and Uchida, H.H. (1996), "Effects of the preparation methodand condition on the magnetic and giant magnetostrictive properties of
$(Tb, Dy)Fe_{2}$ thin films", In Proc.Actuator 96, 5th Intern. Conf. on New Actuators, 275-278, Bremen, Germany. VDI-VDE. - Venkataraman, R., Dayawansa, W.P. and Krishnaprasad, P.S. (1998), "The hybrid motor prototype: design detailsand demonstration results", Technical report, CDCSS, University of Maryland, College Park, MD, 1998.CDCSS T.R. 98-2.
- Vranish, J.M., Naik, D.P., Restorff, J.B. and Teter, J.P. (1991), "Magnetostrictive direct drive rotary motordevelopment", IEEE Trans. Magn., 27, 5355-5357. https://doi.org/10.1109/20.278837
- Wun-Fogle, M., Savage, H.T. and Spano, M.L. (1989), "Enhancement of magnetostrictive effects for sensorapplications", J. Mater. Eng., 11(1), 103-107. https://doi.org/10.1007/BF02833760
- Yariv, A. and Windsor, H. (1980), "Proposal for detection of magnetic field through magnetostrictiveperturbation of optical fibers", Opt. Lett., 5, 87. https://doi.org/10.1364/OL.5.000087
Cited by
- Guide to the Literature of Piezoelectricity and Pyroelectricity. 25 vol.330, pp.1, 2006, https://doi.org/10.1080/00150190600605684
- Stress-Strain Behavior of a Smart Magnetostrictive Actuator for a Bone Transport Device vol.2, pp.4, 2008, https://doi.org/10.1115/1.2997331
- Cytocompatibility evaluation of NiMnSn meta-magnetic shape memory alloys for biomedical applications vol.104, pp.5, 2016, https://doi.org/10.1002/jbm.b.33436
- Design of a Bone Transport Device Using Smart Material Actuators vol.131, pp.9, 2009, https://doi.org/10.1115/1.3160314
- Magnetostrictive vibration energy harvesting using strain energy method vol.81, 2015, https://doi.org/10.1016/j.energy.2014.12.065
- Incremental Magnetoelastic Deformations, with Application to Surface Instability vol.90, pp.1, 2008, https://doi.org/10.1007/s10659-007-9120-6
- Compact hybrid electrohydraulic actuators using smart materials: A review vol.23, pp.6, 2012, https://doi.org/10.1177/1045389X11418862
- A Homogenized Energy Model for the Direct Magnetomechanical Effect vol.42, pp.8, 2006, https://doi.org/10.1109/TMAG.2006.875705
- Effect of Cooling Rate on Crystal Orientation, and Magnetic and Magnetostrictive Properties of TbFe2-Based Alloy Treated in Semisolid State Under a High Magnetic Field vol.51, pp.5, 2015, https://doi.org/10.1109/TMAG.2014.2366728
- Evaluation of magnetostrictive composite coated fabric as a fragment barrier material vol.21, pp.10, 2012, https://doi.org/10.1088/0964-1726/21/10/105027
- Design, test and model of a hybrid magnetostrictive hydraulic actuator vol.18, pp.8, 2009, https://doi.org/10.1088/0964-1726/18/8/085019
- Coupled axisymmetric finite element model of a hydraulically amplified magnetostrictive actuator for active powertrain mounts vol.60, 2012, https://doi.org/10.1016/j.finel.2012.05.003
- Dependence of magnetic susceptibility on stress in textured polycrystalline Fe81.6Ga18.4 and Fe79.1Ga20.9 Galfenol alloys vol.96, pp.1, 2010, https://doi.org/10.1063/1.3280374
- A survey on hysteresis modeling, identification and control vol.49, pp.1-2, 2014, https://doi.org/10.1016/j.ymssp.2014.04.012
- Stress-dependent susceptibility of Galfenol and application to force sensing vol.108, pp.7, 2010, https://doi.org/10.1063/1.3486019
- Magnetic domain structure, crystal orientation, and magnetostriction of Tb 0.27 Dy 0.73 Fe 1.95 solidified in various high magnetic fields vol.401, 2016, https://doi.org/10.1016/j.jmmm.2015.10.127
- On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys vol.55, pp.13, 2007, https://doi.org/10.1016/j.actamat.2007.03.025
- Optimal Tracking Using Magnetostrictive Actuators Operating in Nonlinear and Hysteretic Regimes vol.131, pp.3, 2009, https://doi.org/10.1115/1.3072093
- Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks vol.82, 2017, https://doi.org/10.1016/j.ymssp.2016.05.021
- Major and minor stress-magnetization loops in textured polycrystalline Fe81.6Ga18.4 Galfenol vol.113, pp.2, 2013, https://doi.org/10.1063/1.4772722
- Design and characterization of a flextensional stage based on Terfenol-D actuator vol.15, pp.1, 2014, https://doi.org/10.1007/s12541-013-0316-3
- First Evidence of Surface SH-Wave Propagation in Cubic Piezomagnetics vol.02, pp.05, 2010, https://doi.org/10.4236/jemaa.2010.25037
- A homogenized energy model for the direct magnetomechanical effect vol.42, pp.8, 2004, https://doi.org/10.1109/tmag.2006.9099177
- Multiscale Approach for the Modeling of Chemo-Magneto-Thermo-Mechanical Couplings - Reversible Framework vol.941, pp.None, 2004, https://doi.org/10.4028/www.scientific.net/msf.941.2290
- Model of the Magnetostrictive Hysteresis Loop with Local Maximum vol.12, pp.1, 2004, https://doi.org/10.3390/ma12010105
- Adaptive control of normal load at the friction interface of bladed disks using giant magnetostrictive material vol.31, pp.8, 2004, https://doi.org/10.1177/1045389x20910269
- Giant reversible magnetostriction in a ferromagnet-polymer composite vol.128, pp.5, 2004, https://doi.org/10.1063/5.0018245
- Design and analysis of magnetostrictive sensors for wireless temperature sensing vol.92, pp.1, 2004, https://doi.org/10.1063/5.0035296
- Frequency response of a magnetostrictive wire-polymer composite vol.129, pp.20, 2004, https://doi.org/10.1063/5.0044563
- Wearable wireless power systems for ‘ME-BIT’ magnetoelectric-powered bio implants vol.18, pp.4, 2021, https://doi.org/10.1088/1741-2552/ac1178
- Nanocrystalline FeCr alloys synthesised by severe plastic deformation – A potential material for exchange bias and enhanced magnetostriction vol.534, pp.None, 2004, https://doi.org/10.1016/j.jmmm.2021.168017
- Modeling Magnetostrictive Transducers for Structural Health Monitoring: Ultrasonic Guided Wave Generation and Reception vol.21, pp.23, 2004, https://doi.org/10.3390/s21237971
- Evolution of nonlinear magneto-elastic constitutive laws in ferromagnetic materials: A comprehensive review vol.546, pp.None, 2004, https://doi.org/10.1016/j.jmmm.2021.168821