참고문헌
- Belytschko, T. and Bindeman, L.P. (1993), "Assumed strain stabilization of the eight node hexahedral element", Comp. Meth. Appl. Mech. Eng., 105, 225-260. https://doi.org/10.1016/0045-7825(93)90124-G
- Cao, Y.P., Hu, N., Lu, J., Fukunaga, H. and Yao, Z.H. (2002), "A 3D brick element based on Hu-Washizu variational principle for mesh distortion", Int. J. Num. Meth. Eng., 53, 2529-2548. https://doi.org/10.1002/nme.409
- Chandra, S. and Prathap, G. (1989), "A field-consistent formulation for the eight-noded solid finite element", Comp. Struct., 33, 345-355. https://doi.org/10.1016/0045-7949(89)90005-9
- Chen, W.-J. and Cheung, Y.K. (1992), "Three-dimensional 8-node and 20-node refined hybrid isoparametric elements", Int. J. Num. Meth. Eng., 35, 1871-1889. https://doi.org/10.1002/nme.1620350909
- Chen, Y.-I and Stolarski, H.K. (1998), "Extrapolated fields in the formulation of the assumed strain elements. Part 1: Three-dimensional problems", Comp. Meth. Appl. Mech. Eng., 154, 1-29. https://doi.org/10.1016/S0045-7825(97)00084-4
- Chen, Y.-I (2002), "Mixed formulation based on Hu-Washizu principle and concept of field extrapolation for the four-node quadrilateral element", Int. J. Num. Meth. Eng. (submitted).
- Cheung, Y.K. and Chen, W.-J. (1988), "Isoparametric hybrid hexahedral elements for three dimensional stress analysis", Int. J. Num. Meth. Eng., 26, 677-693. https://doi.org/10.1002/nme.1620260311
- Flanagan, D.P. and Belytschko, T. (1981), "A uniform strain hexahedron and quadrilateral with orthogonal hourglass control", Int. J. Num. Meth. Eng., 17, 679-706. https://doi.org/10.1002/nme.1620170504
- Ibrahimbegovic, A. and Wilson, E.L. (1991), "Thick shell and solid finite elements with independent rotation fields", Int. J. Num. Meth. Eng., 31, 1393-1414. https://doi.org/10.1002/nme.1620310711
- MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elements Anal. Des., 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
- MacNeal, R.H. (1987), "A theorem regarding the locking of tapered four-noded membrane elements", Int. J. Num. Meth. Eng., 24, 1793-1799. https://doi.org/10.1002/nme.1620240913
- Pian, T.H.H. (1964), "Derivation of element stiffness matrices by assumed stress distributions", AIAA J., 2, 1333-1336. https://doi.org/10.2514/3.2546
- Pian, T.H.H. and Chen, D.P. (1983), "On the suppression of zero energy deformation modes", Int. J. Num. Meth. Eng., 19, 1741-1752. https://doi.org/10.1002/nme.1620191202
- Pian, T.H.H. and Sumihara, K. (1984), "Rational approach for assumed stress finite elements", Int. J. Num. Meth. Eng., 20, 1685-1695. https://doi.org/10.1002/nme.1620200911
- Pian, T.H.H. and Tong, P. (1986), "Relations between incompatible displacement model and hybrid stress model", Int. J. Num. Meth. Eng., 22, 173-181. https://doi.org/10.1002/nme.1620220112
- Simo, J.C., Fox, D.D. and Rifai, M.S. (1989), "On a stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects", Comp. Meth. Appl. Mech. Eng., 73, 53-92. https://doi.org/10.1016/0045-7825(89)90098-4
- Sze, K.Y. and Ghali, A. (1993), "Hybrid hexahedral element for solids, plates, shells and beams by selective scaling", Int. J. Num. Meth. Eng., 36, 1519-1540. https://doi.org/10.1002/nme.1620360907
- Sze, K.Y., Soh, A.K. and Sim, Y.S. (1996), "Solid elements with rotational DOFs by explicit hybrid stabilization", Int. J. Num. Meth. Eng., 39, 2987-3005. https://doi.org/10.1002/(SICI)1097-0207(19960915)39:17<2987::AID-NME986>3.0.CO;2-H
- Sze, K.Y. and Yao, L.Q. (2000), "A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I-solid-shell element formulation", Int. J. Num. Meth. Eng., 48, 545-564. https://doi.org/10.1002/(SICI)1097-0207(20000610)48:4<545::AID-NME889>3.0.CO;2-6
- Taylor, R.L., Beresford, P.J. and Wilson, E.L. (1976), "A nonconforming element for stress analysis", Int. J. Num. Meth. Eng., 10, 1211-1219. https://doi.org/10.1002/nme.1620100602
- Wang, X.-J. and Belytschko, T. (1987), "An efficient flexurally superconvergent hexahedral element", Eng. Comp., 4, 281-288. https://doi.org/10.1108/eb023706
- Weissman, S.L. (1996), "High-accuracy low-order three-dimensional brick elements", Int. J. Num. Meth. Eng., 39, 2337-2361. https://doi.org/10.1002/(SICI)1097-0207(19960730)39:14<2337::AID-NME957>3.0.CO;2-7
- Wilson, E.L., Taylor, R.L., Doherty, W.P. and Ghaboussi, J. (1973), "Incompatible displacement models", in: S.J. Fenves et al., eds., Numerical and Computer Methods in Structural Mechanics, Academic Press, New York, pp.43-57.
- Yeo, S.T. and Lee, B.C. (1997), "New stress assumption for hybrid stress elements and refined four-node plane and eight node brick elements", Int. J. Num. Meth. Eng., 40, 2933-2952. https://doi.org/10.1002/(SICI)1097-0207(19970830)40:16<2933::AID-NME198>3.0.CO;2-3
- Yunus, S.M., Pawlak, T.P. and Cook, R.D. (1991), "Solid elements with rotational degrees of freedom: Part 1 - hexahedral elements", Int. J. Num. Meth. Eng., 31, 573-592. https://doi.org/10.1002/nme.1620310310
피인용 문헌
- New quadratic solid–shell elements and their evaluation on linear benchmark problems vol.95, pp.5, 2013, https://doi.org/10.1007/s00607-012-0265-1
- A hybrid 8-node hexahedral element for static and free vibration analysis vol.21, pp.5, 2005, https://doi.org/10.12989/sem.2005.21.5.571
- An improved assumed strain solidâshell element formulation with physical stabilization for geometric non-linear applications and elasticâplastic stability analysis vol.80, pp.13, 2009, https://doi.org/10.1002/nme.2676
- Universal three-dimensional connection hexahedral elements based on hybrid-stress theory for solid structures 2010, https://doi.org/10.1002/nme.2693
- Limit-point buckling analyses using solid, shell and solid-shell elements vol.25, pp.5, 2011, https://doi.org/10.1007/s12206-011-0305-3
- A new assumed strain solid-shell formulation “SHB6” for the six-node prismatic finite element vol.25, pp.9, 2011, https://doi.org/10.1007/s12206-011-0710-7
- A new strain based brick element for plate bending vol.53, pp.1, 2014, https://doi.org/10.1016/j.aej.2013.10.004
- A physically stabilized and locking-free formulation of the (SHB8PS) solid-shell element vol.16, pp.8, 2007, https://doi.org/10.3166/remn.16.1037-1072
- A proposed set of popular limit-point buckling benchmark problems vol.38, pp.6, 2011, https://doi.org/10.12989/sem.2011.38.6.767