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Abstract 一 In this papei; an exponential bound of the distance between a Loop subdivision surface and its control mesh is 
derived based on the topological structure of the control mesh. The exponential bound is independent of the process of 
recursive subdivisions and can be evaluated without subdividing the control mesh actually. Using the exponential bound, we 
can predict the depth of recursion within a user-specified tolerance as well as the error bound after n steps of subdivision. The 
error-estimating approach can be used in many engineering applications such as surface/surface intersection, mesh generation, 
NC machining, surface rendering and the like.
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1. Introduction

Subdivision surfaces can be used to model complicated 
3D shapes with arbitrary topology without trimming 
and patching. Their refining rules are usually very simple 
and easy to analyze and code. A subdivision surface is 
defined as the limit of a finer and finer control mesh by 
subdividing the mesh recursively; hence subdivision is 
closely related to multiresolution. Therefore, subdivision 
surfaces attract much research attention in recent years 
and are widely applied in fields in이uding CAGD, 
computer animation, surgical simulation and medical 
image processing. Because the control mesh defines a 
subdivision surface by approximating to it gradually in 
recursive subdivision process, we usually want to know 
how well the control mesh approximates to the limit 
surface. How many steps of subdivision would be 
necessary to meet a user-specified error? These problems 
are important in practice [1,3,4,13], such as rendering, 
intersection and numerical control machining of the 
surfaces, and remain to be investigated further.

Loop generalized the box splines to triangular meshes 
of arbitrary topologies in 1987 [7]. Any triangular mesh is 
refined step by step using his refining rules, and converges 
to a smooth surface finally. Based on eigenbasis 
functions, J. Stam proposed an evaluation method for 
closed Loop surfaces [12]. Zorin and Kristjansson 
extended the work of J. Stam by considering the 
subdivision rules for piecewise smooth surfaces with 
boundaries depending on parameters [14]. However, these 
evaluation schemes are too complicated to be used to
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analyze the distance between a Loop surface and its 
control mesh. In addition that the control mesh has an 
arbitrary topology in general, the problem of error 
estimate of Loop subdivision has not been solved yet. 
The existing methods for computing the bounds on the 
approximation of polynomials and splines by their 
control structures are based on the special function 
expressions, so that it is almost impossible for them to 
be generalized to subdivision surfaces [2, 8, 9, 10, 11]. 
In 1998, Kobbelt et al. developed a technique to construct 
bounding volumes and envelope meshes for Loop 
surfaces from the resulting control mesh after n steps of 
subdivision [6], but their method can not be used to 
predict the error bound for the control mesh with the 
recursion depth n or estimate the subdivision depth for 
a user-specified tolerance. A new method is presented 
in this paper to estimate the enor bound on the 
approximation of a Loop s나bdivision surface by its 
control mesh, without subdividing the control mesh 
recursively.

In the following, Section 2 outlines the subdivision 
rules of Loop surfaces. Section 3 presents the estimating 
formula for the distance between a Loop surface and 
the control mesh after n subdivision steps. In Section 4, 
the exponential bound between a Loop surface and its 
control mesh is derived. Section 5 describes estimates 
of error bound and depth of recursion (or subdivision 
depth) of a Loop surface. Finally, concluding remark is 
given in the last section.

2. Loop Subdivision Surfaces

Loop subdivision surfaces are designed to generalize 
the box splines to triangular meshes of arbitrary 
topologies. In a subdivision step, each triangle is 
divided into four pieces as shown in Fig. 1. At the
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Fig. 2. Local structures: (a) updating an old vertex; (b) evaluating 
the new vertex for an edge.

same time, each old vertex is updated, which is called 
vertex point, and a new vertex, called edge point, is 
introduced for each edge of the old control mesh. The 
subdivision rules are given as follows (see Fig. 2) [7]:

a m-l 3 1
V' = (1t臨V+K? £"£=*0)+0)+*0+0) 

i=0

where m>3 is the valence of V and - 5/8— 
(3+2cos(2^/m))2/64. Note that each vertex point has 
the same valence as the corresponding old vertex, and 
all edge points are newcomers and have valence 6. A 
control vertex is called extraordinary point if it has a 
valence other than 6. In the following text, we use two 
constants Mi and Ma to denote the minimum and the 
maximum of the valences of the vertices, respectively. 
Note that Ma>6.

Consider any control vertex and all vertices connected 
to it in the mesh after n subdivision steps, and denote 
those vertices by Vn, P^, Pm-\，respectively. 
Let C„ = (Vn, Pl，P1, then Cn+x = ACn,
where the subdivision matrix is

f \
abbbb—bbb
ccdOO — QOd

cdcdQ — QQO

cdQQQ'-Odc

and a = = — ,c=-,d = -.Itis shown in [12]
m 8 8

that A has the following eigenvalues:
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Let p = p(m) = Ai= cos— , then p increases with 

the increase of m. Obviously, Vb= / is an 
eigenvector corresponding to the eigenvalue Ao- Let Zo 
be the left eigenvector of A corresponding to 為 such 
that Zo-v0= 1, then we obtain Zo= (c, b, b,..., b)/(c+mb).

3. Distance Between Control Mesh 
and Limit Surface

Loop subdivision surfaces are designed to generalize 
the recurrence relations for box splines to irregular meshes 
to produce smooth surfaces of arbitrary topologies. Stam 
showed the piecewise parameterization for the control 
mesh with isolated extraordinary vertices such that the 
values of the limit surface can be evaluated exactly at 
any parameter position [12]. In detail, corresponding to 
a face in the control mesh, the limit surface patch can 
be expressed as a smooth functionp(u, v), whose domain 
of definition is Q= {(u,v)Img [0,1] and ve [0,1-u]}. 
In the case of non-isolated extraordinary points, Starn,s 
parameterization scheme is not directly applicable. 
Considering a face containing more than one extraordinary 
point, however, one can find that the limit surface patch 
is divided into four less ones after one subdivision of 
the control mesh and each one has an exact expression 
according to Stam's scheme, then we can establish a 
piecewise parameterization naturally for the surface patch 
from the expressions of four less ones. Thus, for any 
face in the initial control mesh, the corresponding 
surface patch has an exact parameterization scheme, 
denoted by p(u. v) uniformly. Accordingly we denote 
the linear parameterization of a face by Z(w, v), which is 
exactly the triangular face itself.

The approximating error of the control mesh to the 
limit surface is usually defined as

矿= max sup \pk(u,v)-lk(u,v)\

where Pk(u,v) is the limit surface patch corresponding 
to the k-th face 4(他")in the control mesh after n 
subdivision steps. However, due to arbitrary topologies, 
it is almost impossible to find an applicable recursive 
relation for En for estimating the error bound or 
predicting the subdivision depth without subdividing 
the control mesh recursively. On the other hand, it is 
reasonable to use the distance between the control vertices 
and their limits to describe how well the control mesh 
approximates the limit surface, so we propose the 
following error-estimating scheme:
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Thble 1. Comparing Dn and En for the regular tetrahedron

n En Dn n En Dn
0 0.800000 0.800000 4 0.1 응7940e-2 0.187941e-2
1 0.120281 0.120281 5 0.469854e-3 0.469853e-3
2 0300703e-l 0.300703e-l 6 0.117465e-3 0.117466e-3
3 0.751759e-2 0.751759e-2 7 0.293698e-4 0.293770e-4

Z)" = ma히 磬一尸门
i

where P? denote the control vertices in the mesh and 
P? are the corresponding limit points in the subdivision 
process. In general, Z/1 is a good approximation of E1 
because the distance between a control polyhedron and 
the corresponding limit surface usually reaches the 
maximum value at some vertex for such subdivision 
scheme whose refining coefficients are all positive.

Let us have a look at a regular tetrahedron. We 
subdivide it several times and compare ZZ and E1 for 
the initial control mesh and all newly-generated ones, 
see Table 1, where n is the subdivision time. In our ex­
periments, we compute sup \p^u,v)-l^u,v) | by 

(u, v)e Q
sampling parameter values uniformly in Q for each 
face, and accordin이y obtain En. From Table 1, one can 
find that Dn and E1 are always uniform. Some tiny 
deviations of Lf and E1 can be attributed to the use of 
32-bit floating-point numbers. Furthermore, we have 
experimented with more triangular meshes, which are 
often used in the computer graphics community. The 
experimental result shows that U1 can be regarded as a 
good approximation of E\ because they are uniform for 
most cases and have a very little difference for some 
critical cases (e.g. a model of horse shown in Fig. 3). 
Several typical Loop surfaces are shown in Fig. 3, and 
the corresponding experimental result is listed in Table 
2, where VN and FN denote the numbers of vertices 
and faces, respectively, and the last column denotes the 
deviation of Dn and E1 for each model.

For the sake of briefoess, some symbols are introduced. 
Let S1 denote the set of all vertices in the control mesh 
after n subdivision steps, and QV2) denote the average of

Thble 2. Comparing IT and E1 for various control meshes

Model VN FN E1 D” Deviation

bishop 250 496 0.113895 0.113895 0
torus 384 768 0.801320e-l 0.801316e-l 4e-7
hand 1055 2130 0.895788e-l 0.895788e-l 0
dragon 1257 2730 0.165643 0.165643 0
shape 2562 5120 0.393520e-l 0.393520e-l 0
triceratops 2832 5660 0.414170e-l 0.414170e-l 0
blob 8036 16068 0.19423 le-1 0.194231e-l 0
horse 19851 39698 0.338017e-l 0.309205e-l 2.88e-3

1 “I 니
all vertices connected to V", i.e., C(Vn)=— £ Pj-C아尸). 

m丿=o
is called the neighbor's barycenter of Vn. In addition, 
the set of all vertices connected to Vn is denoted by 
Circle^ = {Pl Pt ...，心.

It is proved in [5] that the limit of V71 is =(Z0- C„)r. 
As a result,

广=—J； cV'+bSPr 
c+%« 為 'j

It is followed that

j产_『=5-8# 男 M") 

赫(1* ) /=o
SO

2
Iv°°-v"\ = 5~8p. |c(r)-r|

8(1*2)

Then the distance of the control mesh after n steps of 
Loop subdivision to the limit surface is

2
Dn = max 즈二堑』C( f1)- 内| (1)

E"8(l-p )

Using Eq. (1), it is convenient to compute the 
approximating error of the resulting polyhedron in 
recursive subdivision, which is very useful, especially 
for multi-resolution rendering of subdivision surfaces. 
By the way, in order to apply the error-estimating scheme 
proposed in the paper to open control meshes, it is only 

Fig. 3. Some typical Loop surfaces: bishop, torus, hand, dragon, shape, triceratops, blob and horse, in turn.
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necessary to extrapolate the meshes such that each 
boundary vertex becomes an inner point. In many cases, 
however, we want to estimate the approximating error, but 
it is not necessary to subdivide the control mesh actually, 
Moreover, it is usually very expensive to subdivide a 
control mesh. Therefore, it makes sense to find an 
efidcient estimate of the approximating error with enough 
accuracy based on the initial control mesh.

4. Exponential Bound

Since Eq. （1） cannot be used to predict the recursion 
depth or the error if the control mesh is not subdivided 
enough times, in this section our goal is to seek a new 
error bound, which is evaluated for 나｝e mesh at level n 
using only the level 0 （initial coarse） me아丄 In order to 
achieve 나lis, we need to find a recursive relation of Ef 
firstly, and then educe an estimating formula which 
does not use the value of any DF5 > 0. Based on the 
topological structure of the control mesh, we will 
develop such error bound in the following text. At first, 
let us investigate the difference between a vertex and its 
neighbors5 barycenter. Note that there are two types of 
vertices in the resulting mesh after subdividing the 
control mesh at level n once, ie vertex points and edge 
points. For a vertex point Vn+\

（『+??）+；（尸告+*、））

（Y ffl-1
T'FUV"-驾£理 ⑵

1 1=0

where m is the valence of Vn, In the section, we obey 
the con라emion that P\^Pli±m for any integer I and i. For 
the edge point Pf+1, the local structure is 아】own in 
Fig. 4. One can get

C（P；!+1）-Pf+ -

+ （顶（卩"+，巳\） + ：成？+，啓+2））

+（扣"+心+火+0\））

+（氾"圮3+*"+0时

+（1-a,"）V"+%C（V"）+（l-a*）P?+&C（q）

一（訓”+理）4（理 i+P,3）

where k is the valence of P-1. Then,

= #%<（卩"）一 V"）+a<C（PA理）］ 

기_ *扩禹+心%2）+甲物" + V"+0如

（3）
In order to deal with C（P-+l）-P^1 further, we 

consider the following item firstly:

G"=胡ag max*"-（聲2+岩+邱成）시

For a vertex point, one can obtain

卩”七粉竹+理*H實）=v"+쯔応:'（奸_衫）

m村。
-土（3卩"+圮”+昭+心

-备（3卩"+3理2+理3+心

1
项（3卩"+3尸翕+¥%+珞3）

§- 1
-
3 畐）

where

if ;=/;
认尸，l/8~（zm/m, ifj=z-l ory=/+l;

otherwise

For an edge point, it follows in the same way that
1
 - 8

+孑（护冲3尸丄+广+必）［

zy m— Ip ［
=蠕£广乙（，孥2+尸件叩2）

丿그

+員阡拉?+广+0肅］
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Therefore, we have From the inequality (5), we obtain

Gn+1<(yGn (4)
m-1 

where o= max (l/8+c^/3, £) and Tm=Tm i = V
Mi<m<:Ma '丿=°

協』for any i. It is not difficult to prove that Tm is not 
less than l/8+%?/3 and increases with the increase of 
m, so(7 = Tmq .

Let Fn= max |c(Vn)-Vn|, then from Eqs. (2)-(4) 

one can obtain

I 目顶-貫卩“ and |C(Pr1)-P,n+1|

F </F + 으0긔少 
n~7 0 8(b-v)

Therefore,

Dn<Fn
max 으二实彳’咒+ 

Mi<m<Ma 8(1—p ) L

G()(b"*")-

8(b-v) 一
MMi)

(6)

thus

F„+1<max{ yFn, v^„+aG0/8}

where y = max (5/8-am) and y/= max (am/3).

Note that。侃 decreases with the increase of m, so y = 
5/S-aMa and w= Q初/3.

5 2 7 1 1 5 1
= >p(6)

o 아 3 6 d

hence /= 5/8-aMa= In addition, it is
shown thatand(y>2i//: Let

g“ = (b +c「 W+... + W )

1 z 、 5-8p(m) . 1 .
where /丄------ 匚—스厂 is a degressive function with

8(l-p(m)2)

regard to m. The inequality (6) can reduce to an equality 
in some special cases, e.g. a regular triangular mesh 
with the vertices (i/2+j, ij3/2,0), i, jwZ、

Here, we use the initial control polyhedron to estimate 
the error instead of the resulting control polyhedron 
after n steps of subdivision. Therefore, one can not 
only pre-compute the enor bound for the control mesh 
after n times of recursive subdivision without actually 
subdividing the initial mesh n times, but also predict 
the depth of recursion within a user-specified error 
tolerance. In contrast, the method of Kobbelt et al 니ses 
the resulting control mesh after n steps of subdivision, 
so it is dependent on recursive subdivision, which is 
usually a time-consuming operation.

5. Estimating Subdivision Depth

Equation (6) can be used conveniently to estimate the 
subdivision depth n. If the user-specified error is 
denoted by e, then

then for any n>\ we have the following statement:

*也)+&0/8 (5)

Proof. We use the method of mathematical induction to 
prove the inequality (5). The statement is obviously 
true for 1. Suppose that it is also true for some 
integer n>l, we consider the case of ai+1. Since 
V<Y< b and gn+}=。务 +二 o"+ 四,we have

泪巨尸 F°+ 鶴 G/8 </+1F0+ OgnG^<f+ 'Fo

+g〃+iG()/8

and

四七+。"(％8珈/%心务+。")(*/8£尸¥0

+徐+iG*/8

Note that Fn+} <max{ yFn, y/Fn+cf Go/8} , so it follows 
that

已+匹/械/%+g"】G/8 ■

[/fo+^G(/8]^^£

and [/_1F0+g„_1G(/8]Ju>E (7)

Since g„>cr，_|, we know yFq/i<e and GQp./%<£,
thus

建 2 max log (8)

Note that a>2i/z, so gn_{<l(y~2. It follows that 
+2(广m(g()/8>& so

max(y-1^0,(/-2^G(/8)>e/3

In the same way, we can obtain

zz<max +2 (9)

The right hand sides of (8) and (9) are denoted by n~ 
and n+, respectively, and accordingly rT<n<n+. 
Therefore, increasing n by 1 each time with the initial 
val나。汇, one can easily find the proper integer n in the 
interval [rT, n+] to satisfy (7).

Let us glance at three examples as shown in Fig. 5.
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Fig. 5. Control polyhedra of Loop subdivision.

Table 3. Depths of recursive subdivision and the corresponding 
errors from Equation (6)

nil 3 4 5

Example 1 0.132079 0.057722 0.029211 0.016434 0.009799
Example 2 0.049952 0.023346 0.012499 0.007559 0.004941
Example 3 0.017235 0.009900 0.006192 0.004173 0.002949

n 6 7 8 9 10

Example 1 0.006003 0.003721 0.002318 0.001447 0.000904
Example 2 0.003365 0.002336 0.001636 0.001150 0.000810
Example 3 0.002137 0.001568 0.001158 0.000857 0.000635

For the first example, one can get Mi=4, Ma=6, = 
0.563636, a=0.625000, 6=0.653562,戶0.250000, w 
=0.161458 and Fo=O.61O553. Assume the user-specified 
error £=0.01, then the subdivision depth can be 
calculated: n=5 with n =5 and n+=7. The error between 
the Loop surface and its control mesh is not more than 
0.009799. Similarly, one can obtain for the second 
example Mi-5, “=0.528578, a=0.705136, Go
=0.227720,戶0.304458, ^=0.140155 and Fo=O.2169OO, 
and accordingly the subdivision depth n=4 with rT=3 
and n+=6 for £=0.01 and the corresponding error is not 
more than 0.007559. For the last one, the subdivision 
depth is predicted as 2 in the same way. All predicted 
error bounds are given detailedly for different n in 
Table 3.

6. Con시uding Remark

Based on the topological structure of the control 
mesh, we have presented in this paper an exponential 
bound for Loop subdivision surfaces, which is independent 
of the process of recursive subdivisions and accordin이y 
can be evaluated without actual recursive subdivisions. 
Using the exponential bound, we can predict the depth 
of recursive subdivision within any user-specified error 
tolerance. This is quite useful and important for pre­
computing the subdivision depth of subdivision surfaces 
in many engineering applications such as surface/ 
surface intersection, mesh generation, NC machining, 
surface rendering and the like. For instance, the parallel 

S-Buffer method for generating NC tool paths [3] can 
be directly extended to Loop subdivision surfaces by 
using the error-estimating algorithm proposed in the paper. 
The experiments have shown that the exponential bound 
can be used to estimate the bound on the distance 
between a Loop surface and its control mesh effectively. 
Our error-estimating method can be generalized to other 
subdivision surfaces.
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