References
- Clendennen, S. K. and May, G. D. 1997. Differential gene expression in ripening banana fruit. Plant Physiol. 115:463-469 https://doi.org/10.1104/pp.115.2.463
- Cohen, P., Holmes, C. F. B. and Tsukitani, Y. (1990) Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem. Sci. 15:98-102 https://doi.org/10.1016/0968-0004(90)90192-E
- Creelman, R A. Tierney, M. L. and Mullet 1. E. 1992. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocoty1s and modulate wound gene expression. Proc. Natl. Acad. Sci. USA 89:4938-4941 https://doi.org/10.1073/pnas.89.11.4938
- Czapski, J. and Saniewski, M. 1992. Stimulation of ethylene production and ethylene-forming enzyme in fruits of the non-ripening nor and rin tomato mutants by methyl jasmonate. J. Plant Physiol. 139:265-268 https://doi.org/10.1016/S0176-1617(11)80334-2
- Fils-Lycaon, B. R., Wiersma, P. A., Eastwell, K. C. and Sautiere, P. 1996. A cherry protein and its gene, abundantly expressed in ripening fruit, have been identified as thaumatin-like. Plant Physiol. 111 :269-273 https://doi.org/10.1104/pp.111.1.269
- Giovannoni, J. 1993. Molecular biology of fruit developmental and ripening. In: Methods in Plant Molecular Biology, eds. by J. Bryant, pp. 253-287. Academic Press, New York, USA
- Kim, K. D., Oh, B. J. and Yang, J. 1999. Compatible and incompatible interactions between Colletotrichum gloeosporioides and pepper fruits. PhytoparaSitica 27:97-106 https://doi.org/10.1007/BF03015074
- Kim, W. G, Cho, E. K. and Lee, E. J. 1986. Two strains of Colletotrichum gloeosporioides Penz. causing anthracnose on pepper fruits. Korean J. Plant Pahol. 2:107-113
- Kim, Y. S., Park, J. Y., KimK. S., Ko, M. K., Cheong, S. J. and Oh, B. J. 2002. A thaumatin-1ike gene in nonclimacteric pepper fruits used as a molecular marker in probing ripening, sugar accumulation, and disease resistance. Plant Mol. Bioi. 49: 125-135 https://doi.org/10.1023/A:1014995732171
- King, G J., Turner, V. A., Hussey, C. E., Wurtele, E. S. and Lee, S. M. 1988. Isolation and characterization of a tomato cDNA clone which codes for salt-induced protein. Plant Mol. BioI. 10:402-412
- Kunkel, B. N. and Brooks, A. M. 2002. Cross talk between signaling pathways in pathogen defense. Curro Opin. Plant Biol. 5:325-331 https://doi.org/10.1016/S1369-5266(02)00275-3
- MacKintosh, C. and MacKintosh, RW. 1994. Inhibitors ofprotein kinases and phophatases. Trends Biochem. Sci. 19:444-448 https://doi.org/10.1016/0968-0004(94)90127-9
-
Meyer, B., Houln
$\'{e}$ , G, Pometa-Romero, J., Schantz, M. L. and Schantz, R. 1996. Fruit-specific expression of a defensin-type gene family in bell pepper. Upregulation during ripening and upon wounding. Plant Physiol. 112:615-622 https://doi.org/10.1104/pp.112.2.615 - Oh, B. J., Kim, K. D. and Kim, Y. S. 1998. A microscopic characterization of the infection of green and red pepper fruits by an isolate of Colletotrichum gloeosporioides. J. Phytopathol. 146:301-303 https://doi.org/10.1111/j.1439-0434.1998.tb04695.x
- Oh, B. J., Kim, K. D. and Kim, Y. S. 1999a. Effect of cuticular wax layers of green and red pepper fruits on infection by Colletotrichum gloeosporioides. J. Phytopathol. 147:547-552 https://doi.org/10.1111/j.1439-0434.1999.tb03863.x
- Oh, B. J., Ko, M. K., Kim, Y. S., Kim, K. S., Kostenyuk, I. and Kee, H. K. 1999b. A cytochrome P450 gene is differentially expressed in compatible and incompatible interactions between pepper (Capsicum annuum) and Colletotrichum gloeosporioides. Mol. Plant-Microbe Interact. 14:1044-1052
- Oh, B. J., Ko, M. K., Kostenyuk, I., Shin, B. and Kim, K. S. 1999c. Coexpression of a defensin gene and a thionin-like gene via different signal transduction pathways in pepper and Colletotrichum gloeosporioides interactions. Plant Mol. BioI. 41:313-319 https://doi.org/10.1023/A:1006336203621
- Pressey, R. 1997. Two isoforms of NP24: a thaumatin-like protein tomato fruit. Phytochemistry 44: 1241-1245 https://doi.org/10.1016/S0031-9422(96)00667-X
- Prusky, D., Plumbley, R. A. and KobiIer, I. 1991. The relationship between the antifimgal diene levels and fungal inhibition during quiescent infection of Colletotrichum gloeosporioides in unripe avocado fruits. Plant Path. 40:45-52 https://doi.org/10.1111/j.1365-3059.1991.tb02291.x
- Roberts, W. K. and Selitrennikoff, C. P. 1990. Zeamatin, an antifungal protein from maize with membrane-penneabilizing activity. J. Gen. Microbiol. 136: 1771-1778 https://doi.org/10.1099/00221287-136-9-1771
- Robinson, S. P., Jacobs, A. K. and Dry, I. B. 1997. A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol. 114:771-778 https://doi.org/10.1104/pp.114.3.771
-
Rodrigo, I., Vera, P., Tornero, P., Hern,
$\'{a}$ ndez-Yago, J. and Conejero, V. 1993. cDNA cloning ofviroid-induced tomato pathogenesis- related protein P23. Characterization as a vacuolar antifungal factor. Plant Physiol. 102:939-945 https://doi.org/10.1104/pp.102.3.939 -
Rojo, E., Titarenko, E., Le
$\'{o}$ n, J, Berger, S., Vancanneyt, G and Sanchez-Serrano, J J. 1998. Reversal protein phosphorylation regulates jasmonic acid-dependent and-independent wound signal transduction pathways in Arabidopsis thaliana. Plant J. 13: 153-165 https://doi.org/10.1046/j.1365-313X.1998.00020.x - RUiz-Medrano, R., Jimenez-Moraila, B., Herrera-Estrella, L. and Rivera-Bustamante, R. F. 1992. Nucleotide sequence of an osmotin-like cDNA induced in tomato during viroid infection. Plant Mol. BioI. 20: 1199-1202 https://doi.org/10.1007/BF00028909
- Salzman, R. A., Tikhonova, I., Bordelon, B. P., Hasegawa, P. M. and Bressan, R. A. 1998. Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape. Plant Physiol. 117:465-472 https://doi.org/10.1104/pp.117.2.465
- Saniewski, M., Czapski, J, Nowacki, J and Lange, E. 1987a. The effect ofmethyl jasmonate on ethylene and I-amino-cyclopropane-I-carboxylic acid production in apple fruits. BioI. Plant 29: I99-203 https://doi.org/10.1007/BF02876829
- Saniewski, M., Nowacki, J and Czapski, J 1987b. The effect of methyl jasmonate on ethylene production and ethylenefonning enzyme activity in tomatoes. J. Plant Physiol. 129:175-180 https://doi.org/10.1016/S0176-1617(87)80114-1
- Swinburne, T. R. 1983. Post-Harvest Pathology of Fruits and Vegetables. Academic Press, New York, USA
- Tattersall, D. B., van Heeswijck, R. and Bordier Hoj, P. 1997. Identification and characterization of a fruit-specific, thaumatin- like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiol. 114:759-769 https://doi.org/10.1104/pp.114.3.759
- Thomma, B. P. H. J, Eggennont, K., Penninckx, I. A. M. A., Mauch-Mani, B., Vogelsang, R., Cammue, C. P. A., Broekaert, W. F. 1998. Separate jasmonate-dependent and salicylatedependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Aci. USA 95:15107-15111 https://doi.org/10.1073/pnas.95.25.15107
- Vigers, A. J, Wiedemann, S., Roberts, W. K., Legrand, M., Selitrennikoff, C. P. and Fritig, B. 1992. Thaumatin-like pathogenesis- related proteins are antifungal. Plant Sci. 83: 155-16 I https://doi.org/10.1016/0168-9452(92)90074-V
- Zhu, B., Chen, T. H. H. and Li, P. H. 1993. Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonii. Plant Mol. BioI. 21:729-735 https://doi.org/10.1007/BF00014558
Cited by
- Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance vol.227, pp.3, 2008, https://doi.org/10.1007/s00425-007-0637-5