Cellular Automaton Models Revealing Effects of Initial Bacterial Distribution on Biofilm Growth

생물막 성장에 대한 세균의 초기 분포영향을 나타내는 셀룰라오토마톤 모델

  • Lee, Sang-Hee (Department of Physics, Pusan National University) ;
  • Choi, Kyung-Hee (Division of Biological Sciences, Pusan National University) ;
  • Chon, Tae-Soo (Division of Biological Sciences, Pusan National University)
  • Published : 2004.09.30

Abstract

Two dimensional cellular automaton (CA) models were developed to investigate growth of biofilms in aquatic ecosystems. Simple local rules on CA were applied to governing growth of bacterial populations in relation to different nutrient concentrations. Initial bacterial distribution played an important role in determining population size and morphology of biofilm at low concentrations of nutrition. With clumped distribution, population size increased slowly compared with uniform and random distributions, while the porosity tented to be higher with uniform distribution compared with other initial distributions.

수서 생태계에서 생물막 성장을 고찰하기 위해 2차원 셀룰라오토마톤 (CA) 모델을 구현하였다. 영양물 농도와 연계하여 CA의 단순한 지역 규칙을 세균 개체군의 성장을 나타내는데 적용하였다. 초기 세균 분포는 낮은 영양물 농도에서 개체군 크기와 생물막 형태를 결정하는데 중요한 역할을 하였다. 집중분포에서는 균일분포나 마구잡이분포에 비해 개체군 크기가 느리게 증가하였다. 반면 공극률은 다른 초기 분포에 비해 균일분포에서 높게 나타나는 경향을 보였다.

Keywords

References

  1. Baker, G.C. and M.J. Grimson. 1993 A cellular automaton model of microbial growth. Binary. Comput. Microbiol
  2. Carter, J.T. 1998. Biofilms and planktonic bacteria in a drinking water distribution system. MS thesis, University of Cincinnati
  3. Clark, R.M., B.W. Lykins, J.C. Block, L.J. Wymer and D.J. Reasoner. 1994. Water quality changes in a simulated distribution system. Aqua. 43: 263-277
  4. De Beer, D., P. Stoodley and Z. Lewandowski. 1996. Liquid flow and mass transport in heterogeneous biofilms. Wat. Res. 30: 2761-2765
  5. Delorme, M. and J. Mazoyer. 1999. Cellular automata, Klower Academic Publisher, Dordrecht
  6. Ermentrout, G.B and L. Edelstein-Keshe. 1993. Cellular automata approaches to bioligical modelling. J. Theo. Biol. 160: 97-133
  7. Escher, A. and W.G. Characklis. 1990. Modeling the initial events in biofilm accumulation (ed. Characklis, W.G. and Marshall, K.C), Wiley, New York
  8. Helley, J.M., H.N. Commins, J.H. Lawton and M.P. Hassell. 1994. Competition, succession and pattern in fungal communities: towards a cellular automata model. Oikos 70: 435-442
  9. Hermanowicz, S. W. 1999. Two-dimensional simulations of biofilm development: effects of external environmental conditions. Water Sci. Technol. 39(7): 107-114
  10. Kolenbrander, P.E. and J. London. 1993. Adhere today, here tomorrow: oral bacterial adherence. J. Bacteriol. 175: 3247-3252
  11. Kreft, J.-U., G. Booth and J.W.T. Wimpenny. 1998. A simulator for individual-based modeling of bacterial colony growth. Microbiology 144: 3275-3285
  12. Lee, S.-H., H.K. Pak, H.S. Wi, T.-S. Chon and T. Matsumoto. 2004. Growth dynamics of domain pattern in a three-trophic population model. Physica A 334: 233-242
  13. Lye, D.J. and A.P. Dufour. 1993. Virulence characteristic of heterotrophic bacteria commonly isolated from potable water. Environ. Toxicol. Wat. Q. 8: 13-23
  14. Marsh, P.D. and M.V. Martin. 1992 Oral microbiology, Chapman and Hall, London
  15. Mitchell, M. 1996. Computation in cellular automata: a selected review, Santa Fe Institute, Working Paper 960-974
  16. Noguera, D.R., G.E. Pizarro, D.A. Stahl and B.E. Ritt-mann. 1999. Simulation of multispecies biofilm development in three dimensions. Water Sci. and Technol. 39: 123-130
  17. Okabe, S., H. Satoh and Y. Watanabe. 1999. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 65: 3182-3191
  18. Schmidt, R. 1994. Materials in biological systems. VDI Verlag, Dusseldorf
  19. Shuler, M.L., S.K. Leung and C.C. Dick. 1979. A mathmatical model for the growth of a single bacterial cell. Ann NY Acad. Sci. 326: 35-55
  20. Stickler, D.J., J.B. King, C. Winters and S.L. Morris. 1993. Blockage of urethral catheters by bacterial biofilms. J. Infect. 27: 133
  21. Wanner, O. and W. Gujer. 1986. A multispecies biofilm model. Biotechnol. Bioengng. 28: 314-328
  22. Wimpenny, J.W.T. 1992. Microbial systerms: patterns in time and space. Adv. Microbiol. Ecol. 12: 469-522
  23. Zahid, W. and J. Ganczarczyk. 1994. Fractal properties of the RBC biofilm structure. Water Sci. Technol. 29: 217-279
  24. Zhang, T.C. and P.L. Bishop. 1994a. Evaluation of tortuosity factors and effective diffusivities in biofilms. Water res. 28: 2279-2287
  25. Zhang, T.C. and P.L. Bishop. 1994b. Density, porosity and pore structure of biofilms. Water res. 28: 2267-2277