DOI QR코드

DOI QR Code

FDDO 방법을 이용한 미소평판 주위의 저속 유동장 해석

Analysis of Low-Speed Gas Flows Around a Micro-Plate Using a FDDO Method

  • 정찬홍 (대구대학교 화학공학과)
  • 발행 : 2004.10.01

초록

미소평판 주위의 저속 기체유동장이 기체분자운동론에 근거한 방법으로 조사되었다. 모델충돌적분항으로 단순화된 볼츠만방정식을 Discrete Ordinate 방법과 결합된 유한차분법으로 수치해석 하여 길이가 $20{\mu}m$인 5% 평판 주위의 유동장을 계산하였다. 계산결과가 Information Preservation 방법 및 미끄럼 경계조건을 이용한 연속체 방법에 의한 결과와 비교되었다. 세 가지 서로 다른 방법에 의한 계산결과가 기본적으로 유사한 유동형태를 예측하였으나, 세부적인 변에서는 본 방법의 결과가 다른 두 방법의 결과보다 더 정확함을 보였다.

Low-speed gas flows around a micro-scale flat plate are investigated using a kinetic theory analysis. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the Discrete Ordinate method. Calculations are made for flows around a 5% flat plate with a finite length of 20 microns. The results are compared with those from the Information Preservation method and a continuum approach with slip boundary conditions. It is shown that three different approaches predict a similar basic flow patterns, while the results from the present method are more accurate than those from the other two methods in details.

키워드

참고문헌

  1. Bird, G. A., Molecular Gas Dynamics and The Direct Simulation of Gas Flows, Oxford University Press, London, 1994.
  2. Oh, C. K., Oran, E. S., and Sinkovits, R. S., "Computations of High-Speed, High Knudsen Number Microchannel Flows," Journal of Thermophysics and Heat Transfer, Vol. 11, No. 4, 1997, pp. 497-505. https://doi.org/10.2514/2.6289
  3. Fan, J. and Shen, C., "Statistical Simulation of Low-Speed Rarefied Gas," Journal of Computational Physics, Vol. 167, 2001, pp. 393-412. https://doi.org/10.1006/jcph.2000.6681
  4. Chung, C. H., De Witt, K. J., Jeng, D. R., and Keith Jr., T. G., "Numerical Analysis of Rarefied Gas Flow Through Two-Dimensional Nozzles," J. of Propulsion and Power, Vol. 11, No. 1, 1995, pp. 71-78. https://doi.org/10.2514/3.23842
  5. Bhatnagar, P. L., Gross, E. P., and Krook, M., "A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems,"Physiacal Review, Vol. 94, No. 3, 1954, pp. 511-525. https://doi.org/10.1103/PhysRev.94.511
  6. Chu, C. K., "Kinetic-Theoretic Description of the Formation of a Shock Wave,"Physics of Fluids, Vol. 8, No. 1, 1965, pp. 12-22. https://doi.org/10.1063/1.1761077
  7. Shizgal, B., "A Gaussian Quadrature Procedure for Use in he Solution of the Boltzmann Equation and Related Problems," J. of Computational Physics, Vol. 41, No. 2, 1981, pp. 309-327. https://doi.org/10.1016/0021-9991(81)90099-1
  8. Atassi, H. and Shen, S. F., "A Unified Kinetic Theory Approach to External Rarefied Gas Flows. Part 1. ' Derivation of Hydrodynamic Equations," Journal of Fluid Mechanics, Vol. 53, Part 3, 1972, pp. 417-431. https://doi.org/10.1017/S0022112072000230
  9. Chapman, S., and Cowling, T. G., The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, London (1958).
  10. Gombosi, T. I., Gaskinetics Theory, Cambridge University Press, Cambridge, 1994.
  11. Sun, Q., Boyd, I. D., and Candler, G. V., "Numerical Simulation of Gas Flow Over Micro-Scale Airfoils," AIAA paper 2001-3071, 2001.