DOI QR코드

DOI QR Code

반응표면법을 이용한 전진비행하는 헬리콥터 로터 에어포일의 공력설계

Aerodynamic Design of Helicopter Rotor Airfoil in Forward Flight Using Response Surface Method

  • 선효성 (서울대학교 기계항공공학부 대학원) ;
  • 이수갑 (서울대학교 기계항공공학부)
  • 발행 : 2004.09.01

초록

이 논문은 최적설계 기법의 적용을 통하여 전진비행하는 조건에서 헬리콥터 로터를 구성하는 에어포일의 공력성능을 향상시키는 것에 목적을 가지고 있다. 전진비행하는 로터의 유동장을 모사하는 에어포일의 동적반응에 의한 공력성능은 Navier-Stokes 방정식을 이용하여 계산되어진다. 최적설계 기법은 수리통계적인 방법에 기초하는 반응표면법과 적절한 목적함수와 제약조건의 조합을 통하여 최적점을 구해내는 유전 알고리즘으로 구성되어진다. 유동해석 방법과 설계기법의 통합을 바탕으로 공력성능이 향상된 에어포일의 형상을 구할 수 있었으며 통계학적인 방법에 기초하여 설계연구에 사용되어진 형상변수들이 공력성능에 영향을 미치는 정도를 파악할 수 있었다.

This paper describes an efficient and robust optimization method for helicopter rotor airfoil design in forward flight. Navier-Stokes analysis was employed to compute the dynamic response of an airfoil, which simulates the unsteady rotor flow-field in forward flight. The optimization system consists of two categories; Response Surface Method to construct the response surface model based on D-optimal 3-level factorial design, and Genetic Algorithm to obtain the optimum solution of a defined objective function including penalty terms of constraints. The influence of design variables and their interactions on the aerodynamic performance was examined through the optimization process.

키워드

참고문헌

  1. Mcveigh, M. A, and Mchugh, F. J., "Influence of Tip Shape, Chord, Blade Number, and Airfoil on Advanced Rotor Performance," Journal of the American Helicopter Society, Vol. 29, No.4, October 1984.
  2. Bennett, R. L., "Application of Optimization Methods to Rotor Design Problems," Vertica, Vol. 7, No.3, 1983.
  3. Myers, R. H., and Montgomery, D. C., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York, 1995.
  4. Sobieszczanski-Sobieski, J. and Haftka, R. T., "Multidisciplinary Aerospace Design Optimization: Survey of Recent Development," AIAA Paper 96-0711, 1996.
  5. Ahn, J., Kim, H., Lee, D., and Rho, O., "Response Surface Method for Airfoil Design in Transonic Flow," Journal of Aircraft, Vol. 38, No.2, 2001
  6. Anthony, A G., "Aircraft Multidisciplinary Design Optimization Using Design of Experimental Theory and Response Surface Modeling Methods," Ph. D. Dissertation, Department of Aerospace Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, May 1997.
  7. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes," Journal of Computational Physics, Vol. 43, No.3, 1981.
  8. Sweby, P. K., "High Resolution TVD Schemes Using Flux Limiters," Lectures In Applied Mathematics, Vol. 22, 1985.
  9. Pulliam, T. H., and Chaussee, D.S., "A Diagonal Form of an Implicit Approximate Factorization Algorithm," Journal of Computational Physics, Vol. 39, No.2, 1981.
  10. Baldwin, B.S., and Lomax, J., "Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows," AIAA Paper 78-0257, January 1978.
  11. Mccroskey, W. J., Mcalister, K. W., Carr, L. W., Pucci, S. L., Lambert, O., and Indergrand, R. F., "Dynamic Stall on Advanced Airfoil Sections," Journal of the American Helicopter Society, Vol. 26, No.3, 1981.
  12. Hicks, R. M., and Henne, P. A , "Wing Design by Numerical Optimization," Journal of Aircraft, Vol. 15, No.7, 1978.
  13. Prouty, R. W., Helicopter Performance, Stability, and Control, PWS Engineering, Boston, 1986.

피인용 문헌

  1. Structural Optimization for Hybrid Vertical-Axis Wind Turbine Blade using Response Surface Method vol.37, pp.11, 2013, https://doi.org/10.3795/KSME-A.2013.37.11.1331