Numerical Analysis on the Flow in Cannulae having Side Holes

사이드 홀을 가진 케뉼라에 관한 수치해석적 연구

  • Park Joong Yull (Interdisciplinary Program in Biomedical Engineering Major, Seoul National University, Korea Artificial Organ Center) ;
  • Park Chan Young (Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University) ;
  • Min Byoung Goo (Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Department of Biomedical Engineering, College of Medicine, Seoul National University, Korea Artificial Organ Center)
  • 박중열 (서울대학교 대학원 협동과정 의용생체공학전공, 한국인공장기센터) ;
  • 박찬영 (서울대학교 의학연구원 의공학연구소) ;
  • 민병구 (서울대학교 의학연구원 의공학연구소, 서울대학교 의과대학 의공학교실, 한국인공장기센터)
  • Published : 2004.12.01

Abstract

Insertion of cannulae into vessels may disturb the blood flow doing non-physiological load and stress on blood cells such that ADP may increase and result in hemolysis. Authors used the computational method to simulate the 3-dimensional blood flow inside of the cannula using numerical method. We limited the research to within the drainage cannulae with side holes inserted through the human vein. In this paper, 9 different cannulae with side holes categorized by the number of side holes of 4, 12, and 20, and also categorized by the array type of side holes of staggered array, in-line array, and alternative in-line array were studied and compared to the cannula with no side holes by using CFD analysis. We evaluated the flow rate, the wall shear stress, and the shear rate and compared them with one another to estimate the effect of the side holes. The flow rate is not proportional to the number of the side holes. However, larger number of side holes can reduce the mean shear rate. Both the number and the array type of side holes play an important role on the fluid dynamics of the blood flow in cannulae.

혈액이 케뉼라를 통과할 때 생리적인 범위를 벋어나는 기계적인 하중이나 전단응력을 받게 되며, 그 결과로 용혈의 발생기전이 되는 ADP(Adenosine Diphospate)를 증가 시키게 된다. 저자는 수치해석적인 방법을 이용하여 사이드 홀을 가진 케뉼라의 3차원 유동을 해석하였다. 연구의 대상이 되는 케뉼라는 환자의 대퇴정맥에 삽입되어 혈액을 배출하는 배액 케뉼라이다. 이러한 배액 케뉼라는 배출 성능을 높이기 위해 일반적으로 사이드 홀을 장착한다. 4개, 12개, 20개인 사이드 홀을 가진 케뉼라에 대하여 경우에 대하여, 각각 엇갈림 배열, 직렬 배열. 변형된 직렬배열을 적용하여, 총 9가지 서로 다른 모델을 시뮬레이션 해보았으며 이것을 사이드 홀이 없는 케뉼라와 더불어 비교하였다. 유량, 벽면전단응력(Wail Shear Stress. WSS), 전단율(Shear Rate. SR) 값을 구하여 분석하므로 사이드 홀의 영향을 알아보았다. 연구를 통하여 사이드 홀의 개수와 배열이 모두 혈류 역학적인 변수들에 영향을 주는 것을 확인하였다. 유량이 사이드 홀의 개수에 비례하지 않는 것을 확인 하였고 사이드 홀의 개수가 많을 수로 평균 전단율을 줄이는 것을 확인 하였다.

Keywords

References

  1. J.P. Montoya, S.I. Merz and R.H. Bartlett, 'A standardized system for describing flow/pressure relationships in vascular access devices', ASAlO J, Vol. 37, pp. 4-8, 1991 https://doi.org/10.1097/00002480-199101000-00003
  2. H.D. Polashegg, 'Pressure drops in cannulas for hemodialysis' , lnt J Arti Organs, Vol. 24, pp. 614-623, 2001
  3. RE. Delius, J.P. Montoya, S.I. Merz, J. McKenzie, S. Snedecar, E.L. Bove and R.H. Bartlett, 'New method for describing the performance of cardiac surgery cannulas', Ann Thorac Surg, Vol. 53, pp. 278-281, 1992 https://doi.org/10.1016/0003-4975(92)91333-5
  4. H.D. Polashegg, 'Pressure drops in cannulas for hemodialysis', lnt J Artif Organs, Vol. 24, No.9, pp. 614-623, 2001
  5. M. Grigioni, C. Daniele, U. Morbiducci, G. D'Avenio, G. Di Benedetto, C. Del Gaudio and V. Barbaro, 'Computational model of the fluid dynamics of a cannula inserted in a vessel: incidence of the presence of side holes in blood flow', J Biomech, Vol. 35, pp. 1599-1612, 2002 https://doi.org/10.1016/S0021-9290(02)00231-2
  6. M.W. Hall, P.D. Goodman, K.A. Solen and S.F. Mohammad, 'Formation of occlusion platelet aggregates in whole blood caused by low concentrations of ADP', ASAlO J, Vol. 46, No.6, pp. 693-695, 2000 https://doi.org/10.1097/00002480-200011000-00008
  7. N.P. Rhodes, T.V. Kumary and D.F. Williams, 'Influence of wall shear rate on parameters of blood compatibility of intravascular catheters', Biomaterials, Vol. 17, pp. 1995-2002, 1996 https://doi.org/10.1016/0142-9612(96)00018-X
  8. R.K. Dash, G. Jayaraman and K.N. Mehta, 'Flow in a catheterized curved artery with stenosis', J Biomech, Vol. 32, pp. 49-61, 1999 https://doi.org/10.1016/S0021-9290(98)00142-0
  9. E.V. Bennett, J.G. Fewel, J. Ybarra, F.L. Grover and J.K. Trinkle, 'Comparison of flow differences among venous cannulas and probes' , ASAIO J, Vol. 37, pp. M179-M180, 1979
  10. D.S. De Wachter, P.R. Verdonck, R.F. Verhoeven and R.O. Hombrouckx, 'Red cell injury assessed in a numeric model of a peripheral dialysis needle', ASAIO J, Vol. 42, pp. M524-M529, 1996 https://doi.org/10.1097/00002480-199609000-00041
  11. Y.C. Fung, Biomechanics - Motion, Flow, Stress, and Growth, Springer-Verlag New York Inc.
  12. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Co.
  13. F.M. White, Viscous Fluid Flow, 2nd Edition, McGraw-Hill Co.
  14. K.A. Yarborough, L.F. Mockros and F.J. Lewis, 'Hydrodynamic hemolysis in extracorporeal machines', J Thorac Cardiovasc Surg, Vol. 52, No.4, pp. 550-557, 1966
  15. H.D. Polaschegg, K. Sodemann, B. Estabrook, 'Investigation of the effect of catheter side holes on flow properties and outwash of the locking solution', Proceedings of the 2nd Symposium on Angioaccess for Hemodialysis. Vascular Access Society, Maastricht, 1999:195
  16. A.M. Sallam and N.H.C. Hwan, 'Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses' , Biorheology, Vol. 21, pp. 783-797, 1984 https://doi.org/10.3233/BIR-1984-21605
  17. L.J. Wurzinger, R. Opitz, P. Blasberg and H. Schmid-Schonbein, 'Platelet and coagulation parameters following millisecond exposure to laminar shear stress', Thromb Haemost, Vol. 54, pp. 381-386, 1985
  18. L.J. Wurzinger, R. Opitz and H. Eckstein, 'Mechanical blood trauma: an overview', Angeiologie, Vol. 38, pp. 81-97, 1986
  19. G.H.M. Engbers, L. Dost, W.E. Hennink, P.A. Aarts, J.J. Sixma and J. Feijen, 'An in vitro study of the adhesion of blood platelets onto vascular catheters. Part I', J Biomed Mater Res, Vol. 21, No.5, pp. 613-627, 1987 https://doi.org/10.1002/jbm.820210507