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1. Introduction to provide storage allocation schemes. Often, storage alloca-
tion schemes are used to achieve distinct levels of perform-
A queueing network with blocking, a set of arbitrarily ance for different classes of customers, e.g. voice/data and
linked finite queues, is widely used for modelling tele- command and control systems.
communications, computer systems and manufacturing The purpose of this paper is to analyze and compare a
systems. An important feature of these systems is that a  few existing and/or intuitive storage sharing schemes. The
server can become blocked when the capacity limitation of  first is the complete partitioning(CP) scheme where actually
another queue (i.e., destination) is reached. Because of no sharing is provided, but where the entire finite storage
complexity and dependency among the queues, most analy- is permanently partitioned for each customer class. At the
ses are based on approximation method which is usually other extreme is the second scheme, complete sharing(CS),
decomposing queueing networks into individual queues and  which is such that an arriving customer is accepted if any
investigating each individual queue with revised arrival and  storage space is available. The third is the sharing with
service processes in isolation [10, 11, 12, 13, 14]. minimum allocation(SMA) scheme where a minimum num-
In view of increasing server utilization and reducing ber of storage is always reserved for each customer class
work-in-process inventory, it is required to have some stor- and a common pool of storages is to be shared among all
age of proper size at each server, and it may be desirable  customer class.
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These schemes were studied for R M/M/1 queueing sys-
tems with first-come firest-served (FCFS) by Kamoun and
Kleinrock [7]. Bondi[3] has compared the admitted arrival
rates, queue lengths, and performance of finite capacity
queues whose storage is segregated by priority class or
completely shared.

In this paper, an efficient method for computing the
steady state probabilities of a finite capacity queue with
exponential service is exploited by using the theory of
reversibility. Some interesting properties are derived and the
performance measure (throughput) is then compared for all
storage sharing schemes. And, some numerical results are
presented.

2. Model Description and Analysis
2.1 Model Description

The system is composed of a single server and finite
sharing buffer(storage) with capacity of size B. Each class
of customers arrives according to a Poisson process with
rate A; (i=1,---,n), and the service time for classes of

customers is exponentially distributed - with rate

.
Accepted customers are served by server on a first-come
first-served basis.

Let the states of the system be denoted by ( &,,+-, %)
and (/dle), where k&, (i=1,+-,n) denotes the number of
class 7/ customers and the state (idle) represents the sit-
uation that there is no customer within the system. Since
the occurrence times are exponentially distributed, the sys-
tem dynamics can then be described by a Markov process
with state space A={(idle), ( k,,---, k)| 0< k;< b,
where &, denotes the maximum number of buffer allowed

for class 7 customers.

2.2 Complete Partitioning Scheme

Complete partitioning scheme is that the entire finite buf-
fer is permanently partitioned for each customer class. In
case of n=2 (two classes of customers), b =2 (buffer ca-
pacity with size 2 for each customer) and B=4 (capacity of
finite sharing storage), the steady state transition diagrams
for the CP scheme is shown in <Figure 1.>

<Figure 1> CP with n=2, b =2 and B=4

The steady state probabilitics can be obtained by using
the associated balance equations. However, as the number
of classes and storage capacity increase, such a balance
equation approach may get difficult to analyze the system
due to the multi-dimensional inter-dependency complexity
incurred on the system state space. In spite of the com-
plexity nature, it is fortunate enough to show that the theo-
ry of reversibility can be applied to determine the steady
state probabilities easily without trying to solve any balance
equations directly.

The solution procedure based on the theory of reversi-
bility is the same as those (Lemma 1, Theorem 1, Lemma
2, Theorem 2) in Sung and Kwon {13], and the steady

state probabilities are derived as follows.

Lemma 1. (refer to Sung and Kwon [13])
In case of complete partitioning scheme, the steady state
probability of the system is derived as

Hdi( kl,"', kn):P( klv'“r kn)/ GCD

HCP<Z'dl€): P( ldle)/ Gd) ........................................ (21)
for states (idle) and ( &, -, k)0,
where

(D:{ ( kl,"', kn) l 0S klgb,,OSZSn}s

Go= (k,.--Z/e")emP( kyoos ko)t Pdle),

P( k=, k)=(1—p): ptt tr

(kjt+-+ k! ky by
< g B g,

Bl &0
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P(idle)=1— p, P( By, E)=0—p) - o (kytoet k)
= 3 A, (k_{—_*—kn)' 1 "
p= 2 Ailu R HES g gt
a=2.13 4. P(idle)=1—p,
=1 n
p: IZIA j//‘ts
2.3 Complete Sharing Scheme n
qa;=2;/ 15:"11/1 i
Complete sharing scheme is that all buffers are allocated
Proof.

on a FCFS basis. In case of n=2 (two classes of custom- Th ) £CS sch has stat
ers) and B=3(capacity of finite sharing storage), the steady ® system © scheme tas slafe space
state transition diagrams for the CS scheme is shown in Yfz{ (ki B ZlkiéB} which is truncated

Figure 2. from the state space of infinite capacity buffer and the as-

sociated Markov process is reversible. From the result of
' Corollary 1.10(refer to Kelly [9]), the steady state proba-
bility of the system is derived in Eq. (2.2) for states
(idle) and ( ky,-, k)T
This completes the proof.

2.4 SMA Scheme

The sharing with minimum allocation scheme is that a
minimum number of buffers are reserved for each customer
class and the remaining buffers are pooled and allocated on
a FCFS basis. In case of n=2 (two classes of customers),

m ~1 (reserved buffer capacity with size 1 for each cus-
tomer) and B=4 (capacity of finite sharing storage), the
<Figure 2> CS with n=2 and B=3 steady state transition diagrams for the SMA scheme is
shown in Figure 3.

The solution procedure is similar to Lemma 1 and the

The solution procedure is similar to Lemma 1 and the

steady state probabilities are derived as follows. steady state probabilities are derived as follows.

Lemma 2.
In case of complete sharing scheme, the steady state
probability of the system is derived as

HChkys k)= PCky o k) G
HCS(Z'dle)Z P( za’le)/ Gcs ........................................... (22)

for states (idle) and ( &,,-, £ ,)ET,
where
v={ Cky. k)1 3 k<B),

G= (kl,nz,:k,,)ewp( ki, k )+ P(idle),

<Figure 3> SMA with n=2, m =1 and B=4
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Lemma 3.
In case of SMA scheme, the steady state probability of
the system is derived as

Mo (kyo k)=PCky, -, k)] G
1., (idle) = P( idle)/ G,,,

for states (idle) and ( k,,, k)8,

where

m -

1

Q={ (ki k)1 B k2B

= minimum buffer size for class i,

and 0S k,é m,+B— élmz}

1=

Gopa= (k,,nz,k,,)EQP( ki, k )+ Plidle),

P(ky, = k)=(1—p) otk
(kyt-+ k! ks k.,

kil k1 Ay T Ay

P(idle)=1— p,

p: zZlAi/#,

q;= /11~ / zzllii.

Proof.

The system of SMA scheme has state space

Qz{ (ke k) zzi:lk"SB and 0< k,< m +

n
B— Zlmi} which is truncated from the state space of
=

infinite capacity buffer and the associated Markov process
is reversible. From the result of Corollary 1.10(refer to
Kelly {9]), the steady state probability of the system is de-
rived in  Eq. (2.3) (idle)
(ko kel

This completes the proof.

for  states and

3. Comparison of Sharing Schemes

In this section, the throughput measure is obtained and
And,
some interesting properties are derived that are useful for

compared for the finite storage sharing schemes.

characterizing the finite storage sharing schemes.

Let TH ,, TH, and TH,, denote the throughput

of CP, CS and SMA, respectively. By using the definition

of throughput and steady state probabilities for each

schemes, the throughput TH ; can be derived as follows :

for all 7 (=cp, cs and sma)

And, the throughput 7H ; is characterized as follows:

Property 1,
In the case of complete partitioning scheme, The th-
roughput 7H ,, is a monotonically increasing concave

function of its buffer size.

Proof.
Let TH ,( b,,*, b,) be the throughput of CP with

buffer size &, for each customer class. Then,

TH ( by,, b,)

. (1_1=p
p- (1 Gq,)
= 1=
Qb,,—, b,
where,
2 2 htl
Co= (=M1t X - X o
(Cky+-+ B! £ k,
kll'“kn! qd tq, ]:
by, 0,)
& a ket 1
= 14+ /elzzo /q;:op
(ky++ k) £ k,
A N L

b=kt o+ k,

Let
b, b;+1 PR
Q, /;::0 ki;ﬁﬂ... /g::op
(kit+ ED! Bk,
kol kL @ Tn
b, b+2 e i
0 o B B
(kyt-t k! by k,
kol k 4 4,
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These lead to the relation @, > @,, and it holds that
Q(bl,...’ bz+1”bn)
:Q(bl,...,bi’...,bn)-{- Q]’
( by, b+2,-, bn)

=Q(by, v, b, b))t Q+ Qy
By the definition of TH ,( &,,, b,),
THCD( bl,"', bl'+].,"' bn)
“TH ,( by, b,)
S B
H Q(l?l""’ b,)
_ . 1
K Q(b,,—, b, 41, b,
I B '
U Qb+, b,
1

THETTQ(by, o, bt @

>0 forall x,

And,
2-TH ,( by,, b;+1,,b,)
—THq,( by, bn)
_ —TH ,(by,, b;+2,,b,)
_ -2
= ul Qb b;+1,, b,)
1
+ Qb,,~, b,
+ 1 ]
QUb,,~, b, +2,~, b,
_ —2
Ao~ b)¥aQ;
1
T8, 8y
+ 1 ]
by, b))t @t @y
= p-[X by, bn)(Ql_ Q2)+Q:21+ @ Qz]
) 1
[Q( b],"', bn)+ Ql][Q( bl,"', bn]
. 1
[Q( bl,"', bn)+ Q1+ Qz]
>0 forall b,

Thus, the throughput is a monotonically increasing con-
cave function of buffer size.
This completes the proof.

Property 2.
In the case of complete sharing scheme, the throughput
TH , is a monotonically increasing concave function of

its buffer size.

Proof.
Let TH _(B) be the throughput of CS with buffer size

K. Then,

_ =
TH o(B)=u(1=—o—{5)
o)

=u(1- 1— pB*1

And,
TH ,(B+1)— TH (B

1 _ 1
l+ot-+ p? 1d+pt-+ pB“)

= u(

> 0.
Also,

2 TH (B+ 1)~ TH (B)— TH (B+2)

=2u(1— 1_1234.2)—#(1—?;‘2?)
—u(1=1=8)
o
= u1= ol ey + L
_ 2 ]
1— 0872
> 0.

Thus, the throughput is 'a monotonically increasing con-
cave function of buffer size.
This completes the proof.

Property 3.

In the case of SMA scheme, the throughput TH _,, is
a monotonically increasing concave function of its buffer
size.

Proof.
It can easily be shown according to the procedure of
previous properties.
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This completes the proof.

The performance of classes is influenced not only by the
buffer size but also by the choice of allocation scheme.
Also, when the total arrival rate A is given, the throughput
is influenced by the ratio of class input rates. For the case
of CS, the throughput is independent of the input rates
However, in the case of SMA and CP, the through-
put is dependent on the ratio of input rates and is maxi-

ratio.

mized at equal o s.

Property 4.
In the case of SMA scheme, if the total arrival rate A
is given, the throughput is maximized at the same

p; (i=1, -+, n) for each class customers.

Proof.
For simplification, the proof will be completed only for

the case of n=2, B=3
Let TH,," and TH

balanced input rate case (that is, the same p)),

and m,=m,=1.
"> be the throughput of the
and the

Sma
other one, respectively.

TH,.' - TH,"

- w1 = — ) — (- — =25
G b__ G nb
= /1(1'_10) ( Gsmab. Gsmanb) :

sma sma

And, by the definition of G

G b _ G nb

(1-o[(1+pe+ 0%+ p3+3 0% ¢°, ¢°,)
—(1+p+ p2+ 03_'_3‘)4 qnbl qnbz)]

3(1—p) o' ( q° a®5— 4™, a™,).

Since ¢*,= ¢%=1/2, ¢, + ¢",=1, and

nb

g™, q™, is maximized at g™, = ¢",=0.5,

qbl qbz_ qnbl qnb2 > 0.
TH,- TH,,"

sma > 0
This complete the proof.

Therefore,

Ef
Property 5.
In the case of CP scheme, if the total arrival rate A is
given, the throughput is maximized at the same
p; (=1, -, n) for each class customers.
Proof

For simplification, the proof will be completed only for
the case of n=2, B=2 and &, = b, = I.

Let TH,’ and TH " be the throughput of the
balanced input rate case (that is, the same p;) and the

other one, respectively.

TH ' - TH "
-l J=0 N 0 1—p0
(1 chb) u(1 ngb)
( G b__ G nb)
= (1~ p) < <
Gy G,"

And, by the definition of G,
Gcﬂb _ chnb

(A-olA+o+ 02+20° ¢ ¢°y)
—(I+p+ 02+20° g™, ¢"))]

= 20(1—0) 0% a° a®,— g™, q™,).

Since qb1= (]b2=1/2, C]nb1+ qnbzzl’ and

g”, ¢™, is maximized at ¢",= ¢*,=0.5,
qbl qb2_ qnb1 qnbz > (.
Therefore, TH_,’- TH,™ > 0.

This complete the proof.

Finally, the following resuit can be obtained by the com-
parison of the throughputs for finite storage allocation

schemes.
Theorem 1.

If the capacity of finite sharing storage is ‘the same as B
for all buffer allocation schemes, the relationship of

throughputs for each scheme is derived as follows:

TH, < TH,, < TH
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Proof.
By using the Eq. (3.1),
0494
TH ,— TH ,, 0492 ,
‘ Lrm— =
= _l=ey_ __1l=0 ~ 049 ——
p(1——=z2)—u(l ) 3
cs sma < 0488
3 (G — G, 3 0486
= Hl-o——g g £ 0484
And, 0482
048
Gos— Gy 1 2 3 4 r
= (kl'nz’:kn)-ewP( ky, o, k, )+ Plidle)
oy 2, Uk, k) + Pldie) <Figure 4> Throughputs according to r
Since QC ¥, G,— G, >0 . .
Theref 0 At second, the comparison of throughput according to
— > ().
erefore,  TH o= TH o, the offered load ( o= A/y) is considered with parameter
Moreover, set 2 ( =1, p=0.5). The computational results present that
TH ,,,— TH ., TH < TH < TH , and the throughput for each al-
. 1-p ) (1 — 1_2) location scheme is a monotonically increasing concave
G g G, function of the offered load as depicted in Figure 5.
(G G
= (1 - )=
G o Gy
And, 051
— 05
G sma GCD = 049
= P( kR, k,)+ P(idl 048
o Bpedt R )+ Plidle) £ oar
>3
] - S 046
(kl,Zk,,)e(DP( ki, k,)+ Plidle) £ o
044
Since @ C 2, G,,— G, > 0. 043
Therefore, TH,,,— TH , > 0 06 08 ! 12 4
|
Thus, TH,, < TH ,, < TH. offered load

This completes the proof.

In order to illustrate the above results, the throughput of
the finite storage sharing schemes are compared for the
case of n=2, B=4, m = m,=1 and b = b,=1.

At first, the comparison of throughput according to the
ratio of class input rates is considered with parameter set 1
(A=1, p=0.5).
Figure 4, where r denotes the ratio of class input rates (=

Ayl A0
mized at the same p, (r=1) for each

TH < TH X TH . .

rival rate A is given, the throughput is influenced by the

The computational results are shown in

The results imply that the throughput is maxi-
scheme, and

That is, when the total ar-

ratio of class input rates and by the buffer allocation
schemes.

<Figure 5> Throughputs according to the offered load

4. Conclusions

In this paper, the finite storage sharing schemes which
are the complete sharing (CS), complete partitioning(CP)
and sharing with minimum allocation (SMA) are analyzed
and compared. And, an efficient method is exploited to
compute the steady state probabilities for each allocation
schemes.

Moreover, some interesting properties are derived that are
useful for characterizing the finite storage sharing schemes.
By using the results, the system performance measure
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(throughput) are obtained for all schemes.

Further research is to extend these results to the design

and control of related system such as automated container

terminals and automated storage/retrieval systems(AS/RS).
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